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Bloom Filters 3 & Cardinality Intro



Learning Objectives

Introduce the concept of cardinality and cardinality estimation

Finish discussing bloom filters (and review bit vectors)



Bloom Filter: Error Rate
Given bit vector of size  and  SUHA hash functionm k

h{1,2,3,...,k}

m

What is our expected FPR after  objects are inserted?n

The probability my bit is 1 after  objects insertedn

(1 − (1 −
1
m )

nk

)
k

The number of [assumed independent] trials



Bloom Filter: Error Rate
Vector of size ,  SUHA hash function, and  objectsm k n

h{1,2,3,...,k}

m

To minimize the FPR, do we prefer…

(1 − (1 −
1
m )

nk

)
k

 (A) large  k (B) small k



Bloom Filter: Error Rate
Vector of size ,  SUHA hash function, and  objectsm k n

(1−(1 −
1
m )

nk

)
k

 (A) large  k (B) small k

As  increases, this gets smaller! k

(1 − (1 −
1
m )

nk

)
k

As  decreases, this gets smaller! k



Bloom Filter: Optimal Error Rate

Claim: The optimal hash function is when k * = ln 2 ⋅
m
n

(1 − (1 −
1
m )

nk

)
k

≈ (1 − e
−nk
m )

k

d
dk (1 − e

−nk
m )

k
≈

d
dk (k ln(1 − e

−nk
m ))

(1)

(2)

To build the optimal hash function, fix m and n!



Bloom Filter: Optimal Error Rate

Claim 1: 

(1 −
1
m )

nk

= e
ln[(1 − 1

m )
nk]

(1 − (1 −
1
m )

nk

)
k

≈ (1 − e
−nk
m )

k



Bloom Filter: Optimal Error Rate

Claim 1: 

(1 −
1
m )

nk

= e
ln[(1 − 1

m )
nk]

= e
ln[(1 − 1

m )]nk

(1 − (1 −
1
m )

nk

)
k

≈ (1 − e
−nk
m )

k



Bloom Filter: Optimal Error Rate

Taylors expansion of : ln(1 + x) x −
x2

2
+

x3

3
−

x4

4
+ . . .

“Mercator Series”

(1 −
1
m )

nk

≈ e
−nk
m



Bloom Filter: Optimal Error Rate

Claim 1: 

(1 −
1
m )

nk

= e
ln[(1 − 1

m )
nk]

= e
ln[(1 − 1

m )]nk

≈ e
−nk
m

(1 − (1 −
1
m )

nk

)
k

≈ (1 − e
−nk
m )

k



Bloom Filter: Optimal Error Rate

Claim 2: 

d
dx

ln f(x) =
1

f(x)
df(x)
dx

d
dk (1 − e

−nk
m )

k
≈

d
dk (k ln(1 − e

−nk
m ))

Fact:

TL;DR: min [f(x)] = min [ln f(x)]

Derivative is zero when k* = ln 2 ⋅
m
n



h

Tradeoff for M/N=10

FPR

k

m /n = 10

(1 − e
−nk
m )

k

k* = ln 2 ⋅ 10 = 6.93

Bloom Filter: Error Rate

Figure by Ben Langmead



Bloom Filter: Optimal Parameters

 itemsn = 100  hashesk = 3 m =

k* = ln 2 ⋅
m
n

Given any two values, we can optimize the third

 bitsm = 100  itemsn = 20 k =

 bitsm = 100  itemsk = 2 n =



Bloom Filter: Optimal Parameters

m =
nk
ln 2

≈ 1.44 ⋅ nk Optimal hash function is still O(m)!

n = 60 billion — 130 trillion

n = 250,000 files vs ~1015 nucleotides vs 260 TB



Bloom Filters

Optimal accuracy when:

, number of hash functionsk
, expected number of insertionsn
, filter size in bitsm

h{1,2,3,...,k}A probabilistic data structure storing a set of values

Has three key properties: 

k* = ln 2 ⋅
m
n

Expected false positive rate: (1 − (1 −
1
m )

nk

)
k

≈ (1 − e
−nk
m )

k



Bloom Filter: Website Caching

Maggs, Bruce M., and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer Communication Review 45.3 (2015): 52-66.

0
1
0
1
0
1

Loaded this before?

Cache this page!

Add to filter (but don’t cache!)



Bitwise Operators in C++
How can we encode a bit vector in C++?



Bitwise Operators in C++
Traditionally, bit vectors are read from RIGHT to LEFT

Warning: Lab_Bloom won’t do this

0 0 0 0 1 1 1

1 0 0 1 0 1 0



Bitwise Operators in C++
Let A = 10110 Let B = 01110

A & B:

A | B:

A >> 2:

B << 2:

~B:



Bit Vectors: Unioning

0 1
1 0
2 1
3 1
4 0
5 0
6 1
7 0
8 0
9 1

0 0
1 1
2 1
3 0
4 0
5 0
6 1
7 1
8 1
9 1

Bit Vectors can be trivially merged using bit-wise union.

0
1
2
3
4
5
6
7
8
9

U =



Bit Vectors: Intersection

0 1
1 0
2 1
3 1
4 0
5 0
6 1
7 0
8 0
9 1

0 0
1 1
2 1
3 0
4 0
5 0
6 1
7 1
8 1
9 1

Bit Vectors can be trivially merged using bit-wise intersection.

0
1
2
3
4
5
6
7
8
9

U =



Bit Vector Merging
What is the conceptual meaning behind union and intersection?



Sequence Bloom Trees

ATGGTTAGAATTAAACCCGG 
TGCTAATAAACCUAGTGATG

CGATAGCACAGGTAGATCC 
TACGTAGAGGTCATTAGCC

….

TACGTAGAGGTCATTAGCCG 
TGCTAATAAACCUAGTGATG

Imagine we have a large collection of text…

And our goal is to search these files 
for a query of interest…



Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Sequence Bloom Trees



Sequence Bloom Trees

Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Are ≥ θ fraction of query 
kmers ∈ this Bloom filter? 

If YES, move to children

If NO, stop looking 
at this subtree 

(Global mismatch)

X X X X XXX



Sequence Bloom Trees

SRA FASTA.gz SBT
Leaves 4966 GB 2692 GB  63 GB
Full Tree - - 200 GB

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read 
sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.

Solomon, Brad, and Carl Kingsford. "Improved search of large transcriptomic 
sequencing databases using split sequence bloom trees." International 
Conference on Research in Computational Molecular Biology. Springer, Cham, 
2017.

Sun, Chen, et al. "Allsome sequence bloom trees." International Conference 
on Research in Computational Molecular Biology. Springer, Cham, 2017.

Harris, Robert S., and Paul Medvedev. "Improved representation of sequence 
bloom trees." Bioinformatics 36.3 (2020): 721-727.

SRA-
BLA

ST



Bloom Filters: Tip of the Iceberg

Cohen, Saar, and Yossi Matias. "Spectral bloom filters." Proceedings of the 2003 ACM SIGMOD international conference on 
Management of data. 2003.

Fan, Bin, et al. "Cuckoo filter: Practically better than bloom." Proceedings of the 10th ACM International 
on Conference on emerging Networking Experiments and Technologies. 2014.

Nayak, Sabuzima, and Ripon Patgiri. "countBF: A General-purpose High Accuracy and Space Efficient 
Counting Bloom Filter." 2021 17th International Conference on Network and Service Management 
(CNSM). IEEE, 2021.

Mitzenmacher, Michael. "Compressed bloom filters." IEEE/ACM transactions on networking 10.5 (2002): 604-612.

Crainiceanu, Adina, and Daniel Lemire. "Bloofi: Multidimensional bloom filters." Information Systems 54 (2015): 311-324.

There are many more than shown here…

Chazelle, Bernard, et al. "The bloomier filter: an efficient data structure for static support lookup tables." Proceedings of 
the fifteenth annual ACM-SIAM symposium on Discrete algorithms. 2004.



The hidden problem with (most) sketches…



Cardinality
Cardinality is a measure of how many unique items are in a set

2
4
9
3
7
9
7
8
5
6



Cardinality
946

5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960

42
6901
4336
9228
3317
399

6925
2660
2314
5588

Image: https://doi.org/10.1038/nature03597
Estimate: 60 billion — 130 trillion

Sometimes its not possible or realistic to count all objects!

https://doi.org/10.1038/nature03597


Cardinality Estimation

95

Imagine I fill a hat with numbered cards and draw one card out at random.

If I told you the value of the card was 95, what have we learned?

Analogy from Ben Langmead



95

Imagine I fill a hat with a random subset of numbered cards from 0 to 999

If I told you that the minimum value was 95, what have we learned?

Cardinality Estimation



0 999

Imagine we have multiple uniform random sets with different minima.

Cardinality Estimation

95 200 50010



0 999

Let min = 95. Can we estimate , the cardinality of the set?N

95

Cardinality Estimation



0 999

Let min = 95. Can we estimate , the cardinality of the set?N

95

Cardinality Estimation

Claim: 95 ≈
1000

(N + 1)



0 999

Let min = 95. Can we estimate , the cardinality of the set?N

95

Cardinality Estimation

95 ≈ 1000/(N + 1)
N + 1 ≈ 10.5

N ≈ 9.5

Conceptually: If we scatter  points randomly across the interval,  we 
end up with  + 1 partitions, each about  long

N
N 1000/(N + 1)

Assuming our first ‘partition’ is about average:



Why do we care about “the hat problem”?

Cardinality Estimation



Why do we care about “the hat problem”?

Universe of card sets Key Value

m possible minima

Cardinality Estimation



Cardinality Estimation
Imagine we have a SUHA hash  over a range .h m

0 m − 1

h(x)

Inserting a new key is equivalent to adding a card to our hat!

Tracking only the minimum value is a sketch that estimates the cardinality!



Cardinality Estimation

0 1

h′￼(x) = h(x) / (m − 1)

To make the math work out, lets normalize our hash…

Imagine we have a SUHA hash  over a range .h m

Inserting a new key is equivalent to adding a card to our hat!

Tracking only the minimum value is a sketch that estimates the cardinality!



Cardinality Sketch

0 1

Let  where each  is an uniform 
independent random variable

M = min(X1, X2, . . . , XN) Xi ∈ [0, 1]

Claim: E[M] =
1

N + 1



Cardinality Sketch

0 1M

 can end up in one of two ranges:XN+1

X1 X2 X3 XN XN+1
...Consider an  draw:N + 1 M = min

1≤i≤N
Xi



Cardinality Sketch

0 1M

 can end up in one of two ranges:XN+1

X1 X2 X3 XN XN+1
...Consider an  draw:N + 1 M = min

1≤i≤N
Xi

 will be the new minimum with probability  XN+1 M



Cardinality Sketch

0 1M

 can end up in one of two ranges:XN+1

X1 X2 X3 XN XN+1
...Consider an  draw:N + 1 M = min

1≤i≤N
Xi

 will be the new minimum with probability  XN+1 M

 will not change minimum with probability  XN+1 1 − M



Cardinality Sketch

0 1M

X1 X2 X3 XN XN+1
...Consider an  draw:N + 1 M = min

1≤i≤N
Xi

 will be the new minimum with probability  XN+1 M

By definition of SUHA,  has a  chance of being smallest itemXN+1
1

N + 1



Cardinality Sketch

0 1M

X1 X2 X3 XN XN+1
...Consider an  draw:N + 1 M = min

1≤i≤N
Xi

 will be the new minimum with probability  XN+1 M

By definition of SUHA,  has a  chance of being smallest itemXN+1
1

N + 1

Thus, E[M] =
1

N + 1



0.962 0.328 0.771 0.952 0.923Attempt 1

0.253 0.839 0.327 0.655 0.491Attempt 2

0.134 0.580 0.364 0.743 0.931Attempt 3

N ≈
1
M

− 1Claim: E[M] =
1

N + 1

Cardinality Sketch



The minimum hash is a valid sketch of a dataset but can we do better?

Cardinality Sketch

0 1



M1 M2 M3 Mk

Claim: Taking the -smallest hash value is a better sketch!kth

Cardinality Sketch

0 1

Claim: E[Mk] =
k

N + 1

...



Mk−1

Claim: Taking the -smallest hash value is a better sketch!kth

Cardinality Sketch

Claim: 
E[Mk]

k
=

1
N + 1

= [E[M1] + (E[M2] − E[M1]) + . . . + (E[Mk] − E[Mk−1])] ⋅
1
k

M1 M2 M3 Mk...



Cardinality Sketch

1
N + 1

=
E[Mk]

k

= [E[M1] + (E[M2] − E[M1]) + . . . + (E[Mk] − E[Mk−1])] ⋅
1
k

1

......

Averages  estimates for k
1

N + 1

0

... ...

M1 M2 M3 MkMk−1

...

 minimum 
value (KMV)
kth



Cardinality Sketch

True cardinality = 1,000



Cardinality Sketch

>Read 1 
ATGGTTAGAATTAAACCCGG 
TGCTAATAAACCUAGTGATG
>Read 2 
CGATAGCACAGGTAGATCC 
TACGTAGAGGTCATTAGCC
>Read 3 
TACGTAGAGGTCATTAGCCG 
TGCTAATAAACCUAGTGATG

Hash 0.253 0.839 0.327 0.655 0.491

Given any dataset and a SUHA hash function, we can estimate the 
number of unique items by tracking the k-th minimum hash value.

To use the k-th min, we have to track k minima. Can we use ALL minima?



Applied Cardinalities
Real-world 
Meaning

AGGCCACAGTGTATTATGACTG
|||||||||||  |||||||||
AGGCCACAGTGAGTTATGACTG

AAAAAAAAAAAGATGT-AAGTA
|||||||||||||||| |||||
AAAAAAAAAAAGATGTAAAGTA

GAGG--TCAGATTCACAGCCAC
||||  ||||||||||||||||
GAGGGGTCAGATTCACAGCCAC

Set similarities

J =
|A ∩ B |
|A ∪ B |

O =
|A ∩ B |

min( |A | , |B | )

Cardinalities

|A |
|B |

|A ∪ B |
|A ∩ B |


