
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon

November 18, 2024

Bloom Filters

Announcements
MP_mosaic survey EC reached

MP_traversal survey EC not reached (Have until 11/20 to submit!)

MP_puzzle released, due after break. Break doesn’t count as a week

Learning Objectives

Build a conceptual understanding of a bloom filter

Review probabilistic data structures and one-sided error

Formalize the math behind the bloom filter

Review when you would prefer different data structures

Which collision resolution strategy is better?

• Big Records:

• Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn’t exist with BSTs?

Why talk about BSTs at all?

Running Times
Hash Table AVL Linked List

Find

Expectation*: O(1)***

Worst Case: O(n)

O(log n) O(n)

Insert

Expectation*: O(1)***

Worst Case: O(n)

O(log n) O(1)

Storage Space O(n) O(n) O(n)

Memory-Constrained Data Structures
What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

Google Index Estimate: >60 billion webpages

Google Universe Estimate (2013): >130 trillion webpages

Constrained by Big Data (Large)N

Memory-Constrained Data Structures

GTEx

Constrained by Big Data (Large)N

Sequence Read Archive Size: >60 petabases (1015)

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

Memory-Constrained Data Structures

Constrained by Big Data (Large)N

Table: http://doi.org/10.5334/dsj-2015-011

Estimated total volume of one array: 4.6 EB
Image: https://doi.org/10.1038/nature03597

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

http://doi.org/10.5334/dsj-2015-011
https://doi.org/10.1038/nature03597

Memory-Constrained Data Structures

cache

RAM

disk

network

< 1 second

Months

Years

Hours - Days

(Estimates are Time x 1 billion courtesy of https://gist.github.com/hellerbarde/2843375)

Constrained by resource limitations

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

https://gist.github.com/hellerbarde/2843375

Memory-Constrained Data Structures
What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

Reducing storage costs

1) Throw out information that isn’t needed

2) Compress the dataset

Reducing a hash table

k2
v2

k1
v1

k5
v5

k4
v4

k3
v3

k6
v6

k8
v8

k7
v7

What can we remove from a
hash table?

m

H(k1) = i1

k2k1

k5k4

k3

k6

k8k7

Take away values m

H(k1) = i1

Reducing a hash table

What can we remove from a
hash table?

m

Reducing a hash table

What can we remove from a
hash table?

Take away values and keys

H(k1) = i1

1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
1
0
0
0

This is a bloom filter

m

Reducing a hash table

What can we remove from a
hash table?

Take away values and keys

H(k1) = i1

Bloom Filter ADT

Constructor

Insert

Find

Bloom Filter: Insertion

0 0
1 0
2 0
3 0
4 0
5 0
6 0

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k) = k % 7

Bloom Filter: Insertion
An item is inserted into a bloom filter by hashing
and then setting the hash-valued bit to 1

If the bit was already one, it stays 1

0
0
1
0
0
1
0
1
0
0

H(x1)

H(x2)

H(x3)
H(x4)

Bloom Filter: Deletion

0 0
1 1
2 1
3 0
4 1
5 0
6 1

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k) = k % 7

_delete(13)

_delete(29)

Bloom Filter: Deletion

Due to hash collisions and lack of information,
items cannot be deleted! 0

0
0
0
0
1
0
0
0
0

H(x2)

H(x3)

H(x1)

H(x4)

Bloom Filter: Search

0 0
1 1
2 1
3 0
4 1
5 0
6 1

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k) = k % 7

_find(16)

_find(20)

_find(3)

Bloom Filter: Search

The bloom filter is a probabilistic data structure!
H(α)

If the value in the BF is 0:

If the value in the BF is 1:

0
0
1
0
0
1
0
1
0
0

H(x1)

H(x2)

H(x3)
H(x4)

H(β)

H(δ)

Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

“Not malicious”

“Malicious”

Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

True Positive:

False Positive:

False Negative:

True Negative:

Item Inserted

Bit Value = 1

Item NOT inserted

Bit Value = 0

0
1
0
0
1

‘Yes’
H(z)

0
0
0
0
1

‘No’

True Positive

0
1
0
0
1

‘Yes’

False Positive

H(z) 0
0
0
0
1

‘No’

False Negative

True Negative

Imagine we have a bloom filter that stores malicious sites…

Probabilistic Accuracy: One-sided error

We will NEVER have a False Negative: ≠
We will get some False Positives: =

search with one-
sided error

Query:

Dataset:

search with one-
sided error

Query:

Dataset:

Query:

search with one-
sided error

…

Probabilistic Accuracy: One-sided error

0

1
0

1
0

0

0

1
0

1
1
0

1
0

1
1
0

1
0

1

h1

Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

h1

Use many hashes/filters; add each item to each filter

0

0

0

1
0

0

0

1
0

1
0

0

1
1
1
0

0

1
0

0

h2

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

h1

Use many hashes/filters; add each item to each filter

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

h3h2

0

1
1
1
0

0

1
1
0

1
1
0

1
0

1
1
0

1
0

1

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

h1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

h2

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

h3

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

hk...

Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

... h{1,2,3,...,k}(y)

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1
1

0

1

0

1

0

0

0

1

0

0

0

1
0

1

0

0

1

1

1

0

0

1

0

0

0

1

1
1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1

1

0
0

0

1

0

1

0

0

1

1

1

1

1

1

... h{1,2,3,...,k}(y)

If any query yields 0,
item is not in the set

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1
0

1

1

0

1

0

1

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1
0

0

0

1
1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1
1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

... h{1,2,3,...,k}(z)

If all queries yield 1, item
may be in the set; or we
might have collided k times

Bloom Filter: Repeated Trials

Using repeated trials, even a very bad filter can still have a very low FPR!

Bloom Filter: Repeated Trials

If we have bloom filter, each with a FPR , what is the likelihood that all
filters return the value ‘1’ for an item we didn’t insert?

k p

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

h1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

h2

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

h3

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

hk...

But doesn’t this hurt our storage costs by storing separate filters?k

Bloom Filter: Repeated Trials

Bloom Filter: Repeated Trials

0
1
2
3
4
5
6
7
8
9

h1(x) = x % 10 h2(x) = 2x % 10 h3(x) = (5+3x) % 10
S = { 6, 8, 4 }

Rather than use a new filter for each hash, one filter can use hashesk

Bloom Filter: Repeated Trials

0 0
1 0
2 1
3 1
4 1
5 0
6 1
7 1
8 1
9 1

h1(x) = x % 10 h2(x) = 2x % 10 h3(x) = (5+3x) % 10

_find(1)

_find(16)

Rather than use a new filter for each hash, one filter can use hashesk

Bloom Filter

0
0
1
0
0
1
0
1
0
0

A probabilistic data structure storing a set of values

Built from a bit vector of length and hash functionsm k

Insert / Find runs in: _______________

Delete is not possible (yet)!

H = {h1, h2, . . . , hk}

