Data Structures and Algorithms

Hashing 3

CS 225 November 15, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Review hash table implementations

Improve our closed hash implementation
Determine when and how to resize a hash table

Justify when to use different index approaches

Simple Uniform Hashing Assumption

Given table of size m, a simple uniform hash, &, implies

1
Vkl,kz & UWhere kl # k2) Pl’(h[kl] — h[kz]) — —
m

Uniform: All keys equally likely to hash to any position

|
Pr(hlk]) = —

m

Independent: All key’s hash values are independent of other keys

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

e Open Hashing: store k,v pairs externally

“ Ali Alice Anna
Q.\k B+ A+ A-
%,

Closed Hashing: store k,v pairs in the hash table

e P W INPEFL O

Anna, A-

Separate Chaining Under SUHA @

Under SUHA, a hash table of size m and n elements:

Find runs in: O(1+a).

Insert runs in: O(1).

Remove runs in: O(1+a).

OO0 NOOUL B WN K- O

[ERY
o

(Example of closed hashing)

Collision Handling: Linear Probing

S={16,8,4,13,29,11, 22} |S| =n
h(k) =k % 7 |Array| =m
0 22 h(k,i)=(k+i) % 7
1 8 Try h(k) = (k + 0) % 7, if full...
2 16
3 29
4 4
5 11
6 13

(Example of closed hashing)

Collision Handling: Linear Probing

S={16,38,64,13,29,6 11,22} |S| =n
h(k,i)=(k+1i) % 7 |Array| = m
find (29)

0 22 -

1 8 1) Hash the input key [h(29)=1]

2 16 2) Look at hash value (address) position

3 29 If present, return (k, v)

4 4 If not look at next available space

> I Stop when:

6 13

1) We find the object we are looking for

2) We have searched every position in the array
3) We find a blank space

(Example of closed hashing)

Collision Handling: Linear Probing

S={16,38,64,13,29,6 11,22} |S| =n
h(k,i)=(k+1i) % 7 |Array| = m
remove (16)
0 22 —
1 8 1) Hash the input key [h(16)=2]
2 16 2) Find the actual location (if it exists)
3 29 3) Remove the (k,v) at hash value (address)
4 4 Don't resize the array! Tombstone!
5 11
6 13

A Problem w/ Linear Probing @

Primary Clustering: “Rich get richer”

Description:

1 Collisions create long runs of filled-in indices

1, Should have a 1/m chance to hash anywhere

31 Instead have a (size of cluster) / m chance to hash at end

Remedy:

O 00 N O O o W N — O
W
N

A Problem w/ Linear Probing @

Primary Clustering: “Rich get richer”

Description:

1 Collisions create long runs of filled-in indices

1, Should have a 1/m chance to hash anywhere

31 Instead have a (size of cluster) / m chance to hash at end

Remedy:
Pick a better “next available” position!

O 00 N O O o W N — O
W
N

(Example of closed hashing)

Collision Handling: Quadratic Probing

S={16,8,4,13,29,12,22} IS| = n
h(k) =k % 7 |Array| = m
0 h(k, i) = (k +i*i) % 7
18 Try h(k) = (k + 0) % 7, if full...
2 16
3
4 4
5
6 13

A Problem w/ Quadratic Probing

Secondary Clustering:

0 04 Description:
1 0

2

3

4 03

> Remedy:

6

7

8

9 04

(Example of closed hashing)

Collision Handling: Double Hashing
S={16,38,4,13,29, 11,22} IS| =n
hi(k) =k % 7

|Array| = m
ha(k) =5 - (k % 5)

h(k, i) = (h,(k) + i*h,(K)) % 7
Try h(k) = (k + 0*h,(k)) % 7, if full...

16

o Ul b W N R O

13

Runnin g Times (Understand why we have these rough forms)
(Expectation under SUHA)

Open Hashing:

insert:

find/ remove:

Closed Hashing:

insert:

find/ remove:

Running Times (Expectation under SUHA) @

Open Hashing: () <o < o

insert: 1 . Observe:
- As a increases:

find/ remove: 1 +a

Closed Hashing: 0 <a < 1
1 - If a is constant:

insert:]l —a
1

find/ remove: 1| —a

Run ning Times (Don’t memorize these equations, no need.)
The expected number of probes for find(key) under SUHA

Linear Probing:
o Successful: %(1 + 1/(1-a))
e Unsuccessful: %(1 + 1/(1-a))2

Probes

Double Hashing:
o Successful: 1/a * In(1/(1-a))
e Unsuccessful: 1/(1-a)

Probes

When do we resize?

Resizing a hash table
How do you resize?

Which collision resolution strategy is better? @
e Big Records:

e Structure Speed:

What structure do hash tables implement?
What constraint exists on hashing that doesn’t exist with BSTs?

Why talk about BSTs at all?

std::map in C++

T& map<K, V>::operator|]
pair<iterator, bool> map<K, V>::insert()

iterator map<K, V>::.:erase()

iterator map<K, V>::lower bound(const K &);

iterator map<K, V>::upper bound(const K &);

std::unordered_map in C++
T& unordered map<K, V>::operator[]

pair<iterator, bool> unordered map<K, V>::insert()

iterator unordered map<K, V>::erase()

float unordered map<K, V>::load factor();

void unordered map<K, V>::max load factor(float m);

Running Times @

Expectation™:

Find

Worst Case:

Expectation™:

Insert
Worst Case:

Storage Space

Bonus Slides

Hash Table

Worst-Case behavior is bad — but what about randomness?
1) Fix h, our hash, and assume it is good for all keys:

Simple Uniform Hashing Assumption
(Assume our dataset hashes optimally)

2) Create a universal hash function family:
Given a collection of hash functions, pick one randomly

Like random quicksort if pick of hash is random, good expectation!

Hash Function (Division Method)
Hash of form: h(k) = k %o m

Pro:

Con:

Hash Function (Mid-Square Method)
Hash of form: h(k) = (k * k) and take b bits from middle (m = 2%)

Hash Function (Mid-Square Method)

Hash of form: h(k) = (k * k) and take b bits from middle (m = 2%)

Hash Function (Multiplication Method)
Hash of form: h(k) = |[m(kA% 1)|, 0 <A <L 1

Pro:

Con:

Hash Function (Universal Hash Family)

Hash of form: &, (k) = ((ak + b) %p) Yom, a,b € 5,7,
1
Vi) #F ky, Pryp(hgplki] = hyplks]) < .

Pro:

Con:

