Data Structures and Algorithms Hashing 3

CS 225 Brad Solomon November 15, 2024

Department of Computer Science

Learning Objectives

Review hash table implementations

Improve our closed hash implementation

Determine when and how to resize a hash table

Justify when to use different index approaches

Simple Uniform Hashing Assumption

Given table of size m, a simple uniform hash, h, implies

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2 \text{ , } Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

Uniform: All keys equally likely to hash to any position

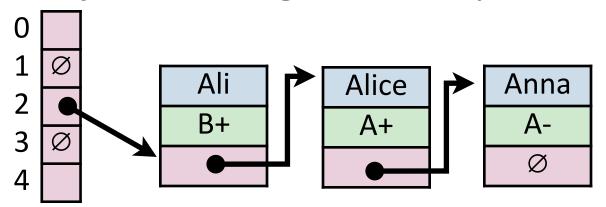
$$Pr(h[k_1]) = \frac{1}{m}$$

Independent: All key's hash values are independent of other keys

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

Open Hashing: store k,v pairs externally



• Closed Hashing: store k, v pairs in the hash table

0	Anna, A-
1	
2	Ali, B+
3	Alice, A+

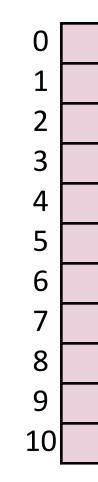
Separate Chaining Under SUHA

Under SUHA, a hash table of size m and n elements:

Find runs in: O(1+ α).

Insert runs in: O(1).

Remove runs in: $O(1+\alpha)$.



Collision Handling: Linear Probing

0	22			
1	8			
2	16			
3	29			
4	4			
5	11			
6	13			

```
h(k, i) = (k + i) \% 7
Try h(k) = (k + 0) \% 7, if full...
Try h(k) = (k + 1) \% 7, if full...
Try h(k) = (k + 2) \% 7, if full...
Try ...
```

Collision Handling: Linear Probing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \}$$
 $|S| = n$
 $h(k, i) = (k + i) \% 7$ $|Array| = m$

0	22			
1	8			
2	16			
3	29			
4	4			
5	11			
6	13			

```
_find(29)
```

- 1) Hash the input key [h(29)=1]
- 2) Look at hash value (address) position If present, return (k, v) If not look at **next available space**

Stop when:

- 1) We find the object we are looking for
- 2) We have searched every position in the array
- 3) We find a blank space

Collision Handling: Linear Probing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \}$$
 $|S| = n$
 $h(k, i) = (k + i) \% 7$ $|Array| = m$

```
0 22
1 8
2 16
3 29
4 4
5 11
6 13
```

remove (16)

- 1) Hash the input key [h(16)=2]
- 2) Find the actual location (if it exists)
- 3) Remove the (k,v) at hash value (address)

Don't resize the array! Tombstone!

A Problem w/ Linear Probing

Primary Clustering: "Rich get richer"

0	
1	11
2	12
3	3 ₁
4	1 ₃
5	32
6	
7	
8	
9	

Description:

Collisions create long runs of filled-in indices

Should have a 1/m chance to hash anywhere

Instead have a (size of cluster) / m chance to hash at end

Remedy:

A Problem w/ Linear Probing

Primary Clustering: "Rich get richer"

0	
1	11
2	12
3	31
4	1 ₃
5	32
6	
7	
8	
9	

Description:

Collisions create long runs of filled-in indices

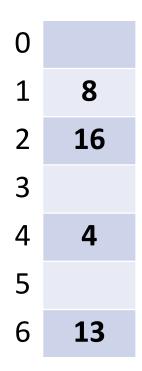
Should have a 1/m chance to hash anywhere

Instead have a (size of cluster) / m chance to hash at end

Remedy:

Pick a better "next available" position!

Collision Handling: Quadratic Probing



```
h(k, i) = (k + i*i) \% 7

Try h(k) = (k + 0) \% 7, if full...

Try h(k) = (k + 1*1) \% 7, if full...

Try h(k) = (k + 2*2) \% 7, if full...

Try ...
```

A Problem w/ Quadratic Probing

Secondary Clustering:

0	01
1	02
2	
3	
4	03
5	
6	
7	
8	
9	04

Description:

Remedy:

Collision Handling: Double Hashing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \}$$

 $h_1(k) = k \% 7$
 $h_2(k) = 5 - (k \% 5)$

$$h(k, i) = (h_1(k) + i*h_2(k)) \% 7$$

Try $h(k) = (k + 0*h_2(k)) \% 7$, if full...

Try $h(k) = (k + 1*h_2(k)) \% 7$, if full...

Try $h(k) = (k + 2*h_2(k)) \% 7$, if full...

Try ...

Running Times (Understand why we have these rough forms)

(Expectation under SUHA)

Open Hashing:

insert: _____.

find/ remove: _____.

Closed Hashing:

insert: _____.

find/ remove: .

Running Times (Expectation under SUHA)

Open Hashing: $0 \le \alpha \le \infty$

insert:
$$1$$
.

find/ remove:
$$\frac{1+\alpha}{\alpha}$$

Closed Hashing:
$$0 \le \alpha < 1$$

find/ remove: $1 - \alpha$

insert:
$$\frac{1}{1-\alpha}$$
.

Observe:

- As α increases:

- If α is constant:

Running Times (Don't memorize these equations, no need.)

The expected number of probes for find(key) under SUHA

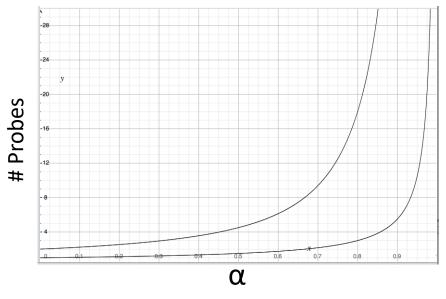
Linear Probing:

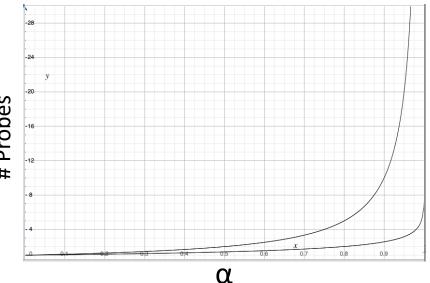
- Successful: $\frac{1}{1}(1 + \frac{1}{1-\alpha})$
- Unsuccessful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^2$

Double Hashing:

- Successful: $1/\alpha * ln(1/(1-\alpha))$
- Unsuccessful: $1/(1-\alpha)$

When do we resize?





Resizing a hash table

How do you resize?

Which collision resolution strategy is better?

Big Records:

• Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn't exist with BSTs?

Why talk about BSTs at all?

std::map in C++

```
T& map<K, V>::operator[]
pair<iterator, bool> map<K, V>::insert()
iterator map<K, V>::erase()

iterator map<K, V>::lower_bound( const K & );
iterator map<K, V>::upper bound( const K & );
```

std::unordered_map in C++

```
T& unordered map<K, V>::operator[]
pair<iterator, bool> unordered map<K, V>::insert()
iterator unordered map<K, V>::erase()
iterator map<K, V>::lower bound( const K & );
iterator map<K, V>::upper bound( const K & );
float unordered map<K, V>::load factor();
void unordered map<K, V>::max load factor(float m);
```

Running Times

	Hash Table	AVL	Linked List
Find	Expectation*: Worst Case:		
Insert	Expectation*: Worst Case:		
Storage Space			

Bonus Slides

Hash Table

Worst-Case behavior is bad — but what about randomness?

1) Fix h, our hash, and assume it is good for all keys:

Simple Uniform Hashing Assumption

(Assume our dataset hashes optimally)

2) Create a *universal hash function family:*

Given a collection of hash functions, pick one randomly

Like random quicksort if pick of hash is random, good expectation!

Hash Function (Division Method)

Hash of form: h(k) = k % m

Pro:

Con:

Hash Function (Mid-Square Method)

Hash of form: h(k) = (k * k) and take b bits from middle $(m = 2^b)$

Hash Function (Mid-Square Method)

Hash of form: h(k) = (k * k) and take b bits from middle $(m = 2^b)$

Hash Function (Multiplication Method)

Hash of form: $h(k) = |m(kA\%1)|, 0 \le A \le 1$

Pro:

Con:

Hash Function (Universal Hash Family)

Hash of form: $h_{ab}(k) = ((ak + b) \% p) \% m$, $a, b \in \mathbb{Z}_p^*, \mathbb{Z}_p$

$$\forall k_1 \neq k_2$$
, $Pr_{a,b}(h_{ab}[k_1] = h_{ab}[k_2]) \leq \frac{1}{m}$

Pro:

Con: