Data Structures and Algorithms Hashing 2

CS 225 Brad Solomon November 13, 2024

Department of Computer Science

Learning Objectives

Review fundamentals of hash tables

Introduce closed hashing approaches to hash collisions

Determine when and how to resize a hash table

Justify when to use different index approaches

A Hash Table based Dictionary

User Code (is a map):

Dictionary<KeyType, ValueType> d; $d[k] = v;$ **1 2**

A **Hash Table** consists of three things:

1. A hash function

2. A data storage structure

3. A method of addressing *hash collisions*

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

• Open Hashing: store *k,v* pairs externally

• Closed Hashing: store *k,v* pairs in the hash table

Hash Table (Separate Chaining)

Hash Table (Separate Chaining)

For hash table of size *m* **and** *n* **elements:**

Find runs in: _________________

Insert runs in: **with all and the set of the s**

Remove runs in:

Hash Table

Worst-Case behavior is bad — but what about randomness?

1) **Fix** *h*, our hash, and assume it is good for *all keys*:

Simple Uniform Hashing Assumption

(Assume our dataset hashes optimally)

2) Create a *universal hash function family:*

Given a collection of hash functions, pick one randomly

Like random quicksort if pick of hash is random, good expectation!

Simple Uniform Hashing Assumption

Given table of size m , a simple uniform hash, h , implies

$$
\forall k_1, k_2 \in U
$$
 where $k_1 \neq k_2$, $Pr(h[k_1] = h[k_2]) = \frac{1}{m}$

Uniform:

Independent:

Simple Uniform Hashing Assumption

Given table of size m , a simple uniform hash, h , implies

$$
\forall k_1, k_2 \in U
$$
 where $k_1 \neq k_2$, $Pr(h[k_1] = h[k_2]) = \frac{1}{m}$

Uniform: All keys equally likely to hash to any position $Pr(h[k_1]) =$ 1 *m*

Independent: All key's hash values are independent of other keys

Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is *n m* **Table Size:** *m* **Num objects:** *n* $H_{i,j} = \begin{cases}$ 1 if item i hashes to j 0 otherwise $\alpha_j = \sum H_{i,j}$ *i* α_i = expected # of items hashing to position j

Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is *n m* **Table Size:** *m* **Num objects:** *n* $H_{i,j} = \begin{cases}$ 1 if item i hashes to j 0 otherwise $\alpha_j = \sum H_{i,j}$ *i* α_i = expected # of items hashing to position j $E[\alpha_j] = E[\sum_{j=1}^{n}$ $H_{i,j}$

i

Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is *n m* **Table Size:** *m* **Num objects:** *n* $H_{i,j} = \begin{cases}$ 1 if item i hashes to j 0 otherwise $\alpha_j = \sum$ *i* $H_{i,j}$ α_i = expected # of items hashing to position j $E[\alpha_j] = E[\sum H_{i,j}]$ *i* $E[\alpha_j] = \sum Pr(H_{i,j} = 1) * 1 + Pr(H_{i,j} = 0) * 0$ *i*

Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is *n m* **Table Size:** *m* **Num objects:** *n* $H_{i,j} = \begin{cases}$ 1 if item i hashes to j 0 otherwise $\alpha_j = \sum$ *i* $H_{i,j}$ α_i = expected # of items hashing to position j $E[\alpha_j] = E[\sum H_{i,j}]$ *i* $E[\alpha_j] = \sum Pr(H_{i,j} = 1) * 1 + Pr(H_{i,j} = 0) * 0$ *i* $E[\alpha_j] = n * Pr(H_{i,j} = 1)$

Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is *n m* **Table Size:** *m* **Num objects:** *n* $H_{i,j} = \begin{cases}$ 1 if item i hashes to j 0 otherwise $\alpha_j = \sum$ *i* $H_{i,j}$ α_i = expected # of items hashing to position j $E[\alpha_j] = E[\sum_{j=1}^{n}$ *i* $H_{i,j}$ *Pr*[$H_{i,j} = 1$] = 1 *m* $E[\alpha_j] = n * Pr(H_{i,j} = 1)$

Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is $\frac{1}{10}$ Table Size: *m n m* **Num objects:** *n* $H_{i,j} = \begin{cases}$ 1 if item i hashes to j 0 otherwise $\alpha_j = \sum H_{i,j}$ *i* α_i = expected # of items hashing to position j $E[\alpha_j] = E[\sum_{j=1}^{n}$ *i* $H_{i,j}$ *Pr*[$H_{i,j} = 1$] = 1 *m* $E[\alpha_j] = n * Pr(H_{i,j} = 1)$ $\mathbf{E}[\alpha_j] =$ **n m**

Separate Chaining Under SUHA

Under SUHA, a hash table of size *m* **and** *n* **elements:**

Find runs in: ____________.

Insert runs in: ________.

Remove runs in: __________.

(Example of closed hashing)

Collision Handling: Probe-based Hashing **h(k) = k % 7** $S = \{ 1, 8, 15 \}$ $|S| = n$ **|Array| = m**

Collision Handling: Linear Probing **|S| = n h(k) = k % 7 |Array| = m S = { 16, 8, 4, 13, 29, 11, 22 }**

h(k, i) = (k + i) % 7 Try h(k) = (k + 0) % 7, if full… Try h(k) = (k + 1) % 7, if full… Try h(k) = (k + 2) % 7, if full… Try …

(Example of closed hashing)

Collision Handling: Linear Probing **|S| = n h(k, i) = (k + i) % 7 |Array| = m S = { 16, 8, 4, 13, 29, 11, 22 }**

_find(29)

(Example of closed hashing)

Collision Handling: Linear Probing **|S| = n h(k, i) = (k + i) % 7 |Array| = m S = { 16, 8, 4, 13, 29, 11, 22 }**

_remove(16)

A Problem w/ Linear Probing

Primary Clustering:

Description:

Remedy:

```
(Example of closed hashing)
```
Collision Handling: Quadratic Probing **h(k) = k % 7 S = { 16, 8, 4, 13, 29, 12, 22 } |S| = n |Array| = m**

h(k, i) = (k + i*i) % 7 Try h(k) = (k + 0) % 7, if full… Try h(k) = (k + 1*1) % 7, if full… Try h(k) = (k + 2*2) % 7, if full… Try …

A Problem w/ Quadratic Probing

Secondary Clustering:

Description:

Remedy:

Collision Handling: Double Hashing **|S| = n** $h_1(k) = k % 7$ | Array | = m **S = { 16, 8, 4, 13, 29, 11, 22 }** $h_2(k) = 5 - (k \times 5)$

 $h(k, i) = (h_1(k) + i^*h_2(k)) % 7$ **Try h(k) = (k + 0*h₂(k)) % 7, if full... Try h(k) = (k + 1*h₂(k)) % 7, if full... Try h(k) = (k + 2^{*}h₂(k)) % 7, if full... Try …**

Running Times *(Don't memorize these equations, no need.) (Expectation under SUHA)*

Open Hashing:

insert: __________.

find/ remove: $\frac{}{2}$.

Closed Hashing:

insert: __________.

find/ remove: The contract of the contract of

Running Times *(Don't memorize these equations, no need.) The expected number of probes for find(key) under SUHA*

Linear Probing:

Double Hashing:

- Successful: **½(1 + 1/(1-α))**
- Unsuccessful: **½(1 + 1/(1-α))2**

Instead, observe:

- As α increases:

- Successful: **1/α * ln(1/(1-α))**
- Unsuccessful: **1/(1-α)**

- If α is constant:

Separate Chaining:

- Successful: **1 + α/2**
- Unsuccessful: **1 + α**

Running Times

The expected number of probes for find(key) under SUHA

Linear Probing:

- Successful: **½(1 + 1/(1-α))**
- Unsuccessful: **½(1 + 1/(1-α))2**

Double Hashing:

- Successful: **1/α * ln(1/(1-α))**
- Unsuccessful: **1/(1-α)**

When do we resize?

Which collision resolution strategy is better?

- Big Records:
- Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn't exist with BSTs?

Why talk about BSTs at all?

Running Times

