
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon

November 13, 2024

Hashing 2

Learning Objectives

Introduce closed hashing approaches to hash collisions

Determine when and how to resize a hash table

Review fundamentals of hash tables

Justify when to use different index approaches

A Hash Table based Dictionary

Dictionary<KeyType, ValueType> d;
d[k] = v;

1
2

User Code (is a map):

A Hash Table consists of three things:

1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Open vs Closed Hashing

• Open Hashing: store k,v pairs externally

• Closed Hashing: store k,v pairs in the hash table

Addressing hash collisions depends on your storage structure.

Key Value Hash
Bob B+ 2

Anna A- 4
Alice A+ 4
BeCy B 2
BreC A- 2
Greg A 0
Sue B 7
Ali B+ 4

Laura A 7
Lily B+ 7

0
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7
8 ∅
9 ∅

10 ∅

Greg
A
∅

BreC
A-

BeCy
B

Bob
B+
∅

Ali
B+

Alice
A+

Anna
A-
∅

Lily
B+

Laura
A

Sue
B
∅

Hash Table (Separate Chaining)

Hash Table (Separate Chaining)

remove runs in: __________.

0
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7
8 ∅
9 ∅

10 ∅

Greg
A
∅

BreC
A-

BeCy
B

Ali
B+

Alice
A+

Lily
B+

Laura
A

For hash table of size m and n elements:

Find runs in: _________________

Insert runs in: _________________

Remove runs in: _________________

Worst-Case behavior is bad — but what about randomness?

Hash Table

1) Fix h, our hash, and assume it is good for all keys:

2) Create a universal hash function family:

Simple Uniform Hashing Assumption

(Assume our dataset hashes optimally)

Given a collection of hash functions, pick one randomly

Like random quicksort if pick of hash is random, good expectation!

Simple Uniform Hashing Assumption
Given table of size , a simple uniform hash, , implies

 where ,

m h

∀k1, k2 ∈ U k1 ≠ k2 Pr(h[k1] = h[k2]) =
1
m

Uniform:

Independent:

Simple Uniform Hashing Assumption
Given table of size , a simple uniform hash, , implies

 where ,

m h

∀k1, k2 ∈ U k1 ≠ k2 Pr(h[k1] = h[k2]) =
1
m

Uniform: All keys equally likely to hash to any position

Independent: All key’s hash values are independent of other keys

Pr(h[k1]) =
1
m

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j]

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j]
E[αj] = ∑

i

Pr(Hi,j = 1) * 1 + Pr(Hi,j = 0) * 0

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j]
E[αj] = ∑

i

Pr(Hi,j = 1) * 1 + Pr(Hi,j = 0) * 0

E[αj] = n * Pr(Hi,j = 1)

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j] Pr[Hi,j = 1] =
1
m

E[αj] = n * Pr(Hi,j = 1)

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j] Pr[Hi,j = 1] =
1
m

E[αj] = n * Pr(Hi,j = 1)

E[αj] =
n
m

Separate Chaining Under SUHA

Under SUHA, a hash table of size m and n elements:

Find runs in: __________.

Insert runs in: __________.

Remove runs in: __________.

0
1
2
3
4
5
6
7
8
9

10

Collision Handling: Probe-based Hashing
(Example of closed hashing)

0
1
2
3
4
5
6

h(k) = k % 7
S = { 1, 8 , 15} |S| = n

|Array| = m

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k) = k % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k, i) = (k + i) % 7
Try h(k) = (k + 0) % 7, if full…
Try h(k) = (k + 1) % 7, if full…
Try h(k) = (k + 2) % 7, if full…
Try …

0
1
2
3
4
5
6

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k, i) = (k + i) % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

0 22

1 8

2 16

3 29

4 4

5 11

6 13

_find(29)

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k, i) = (k + i) % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

0 22

1 8

2 16

3 29

4 4

5 11

6 13

_remove(16)

A Problem w/ Linear Probing

0
1 11

2 12

3 31

4 13

5 32

6
7
8
9

Primary Clustering:

Description:

Remedy:

Collision Handling: Quadratic Probing
(Example of closed hashing)

h(k) = k % 7
S = { 16, 8, 4, 13, 29, 12, 22 }

h(k, i) = (k + i*i) % 7
Try h(k) = (k + 0) % 7, if full…
Try h(k) = (k + 1*1) % 7, if full…
Try h(k) = (k + 2*2) % 7, if full…
Try …

0
1 8
2 16
3
4 4
5
6 13

|S| = n
|Array| = m

A Problem w/ Quadratic Probing

0 01

1 02

2
3
4 03

5
6
7
8
9 04

Secondary Clustering:

Description:

Remedy:

Collision Handling: Double Hashing
(Example of closed hashing)

|S| = n
|Array| = mh1(k) = k % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k, i) = (h1(k) + i*h2(k)) % 7
Try h(k) = (k + 0*h2(k)) % 7, if full…
Try h(k) = (k + 1*h2(k)) % 7, if full…
Try h(k) = (k + 2*h2(k)) % 7, if full…
Try …

0
1 8
2 16
3
4 4
5
6 13

h2(k) = 5 - (k % 5)

Running Times
Open Hashing:

Closed Hashing:

insert: __________.

find/ remove: __________.

insert: __________.

find/ remove: __________.

(Don’t memorize these equations, no need.)
(Expectation under SUHA)

Running Times
Linear Probing:

• Successful: ½(1 + 1/(1-α))

• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:

• Successful: 1/α * ln(1/(1-α))

• Unsuccessful: 1/(1-α)

Separate Chaining:

• Successful: 1 + α/2

• Unsuccessful: 1 + α

The expected number of probes for find(key) under SUHA
(Don’t memorize these equations, no need.)

Instead, observe:

- As α increases:

- If α is constant:

Running Times
Linear Probing:

• Successful: ½(1 + 1/(1-α))

• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:

• Successful: 1/α * ln(1/(1-α))

• Unsuccessful: 1/(1-α)

When do we resize?

The expected number of probes for find(key) under SUHA

Pr

ob
es

Pr

ob
es

α

α

Resizing a hash table
How do you resize?

Which collision resolution strategy is better?

• Big Records:

• Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn’t exist with BSTs?

Why talk about BSTs at all?

Running Times
Hash Table AVL Linked List

Find

Expectation*:

Worst Case:

Insert

Expectation*:

Worst Case:

Storage Space

