Data Structures and Algorithms Hashing 2

CS 225 Brad Solomon November 13, 2024

Ooops no tablet -_-

Department of Computer Science

Learning Objectives

Review fundamentals of hash tables

Want an O(1) data structure! With probability we can get close in expectation! Introduce **closed hashing** approaches to hash collisions

Determine when and how to resize a hash table

Justify when to use different index approaches

A Hash Table based Dictionary

User Code (is a map):

1 Dictionary<KeyType, ValueType> d; 2 d[k] = v;

A Hash Table consists of three things:

- 1. A hash function Assigns numeric (positive int) address to any key Key -> Hash Value (Address)
- 2. A data storage structure Array very good at lookup given index Hash Value (Address) is an index!

3. A method of addressing *hash collisions* Two different keys, same hash value

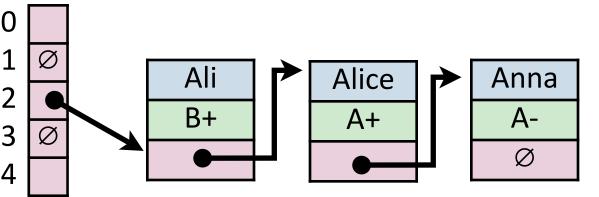
Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

• **Open Hashing:** store *k*,*v* pairs externally

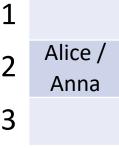
Such as a linked list

Resolve collisions by adding to list



• Closed Hashing: store k, v pairs in the hash table

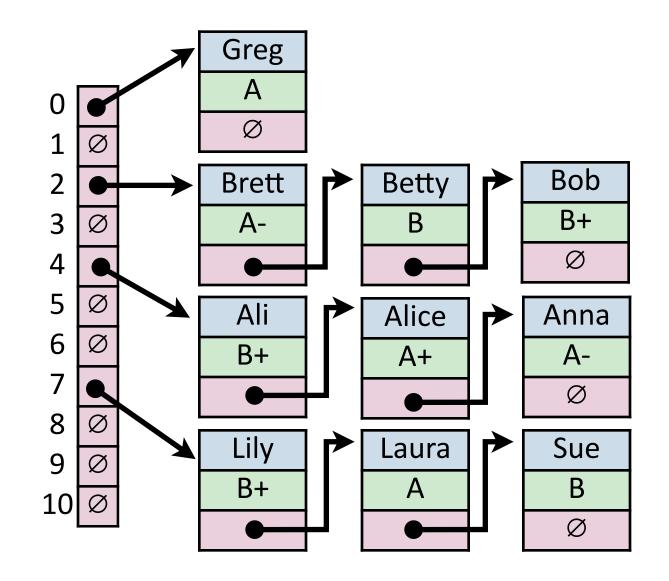
Everything stored in one list 0 How to store collisions? Unclear! 1

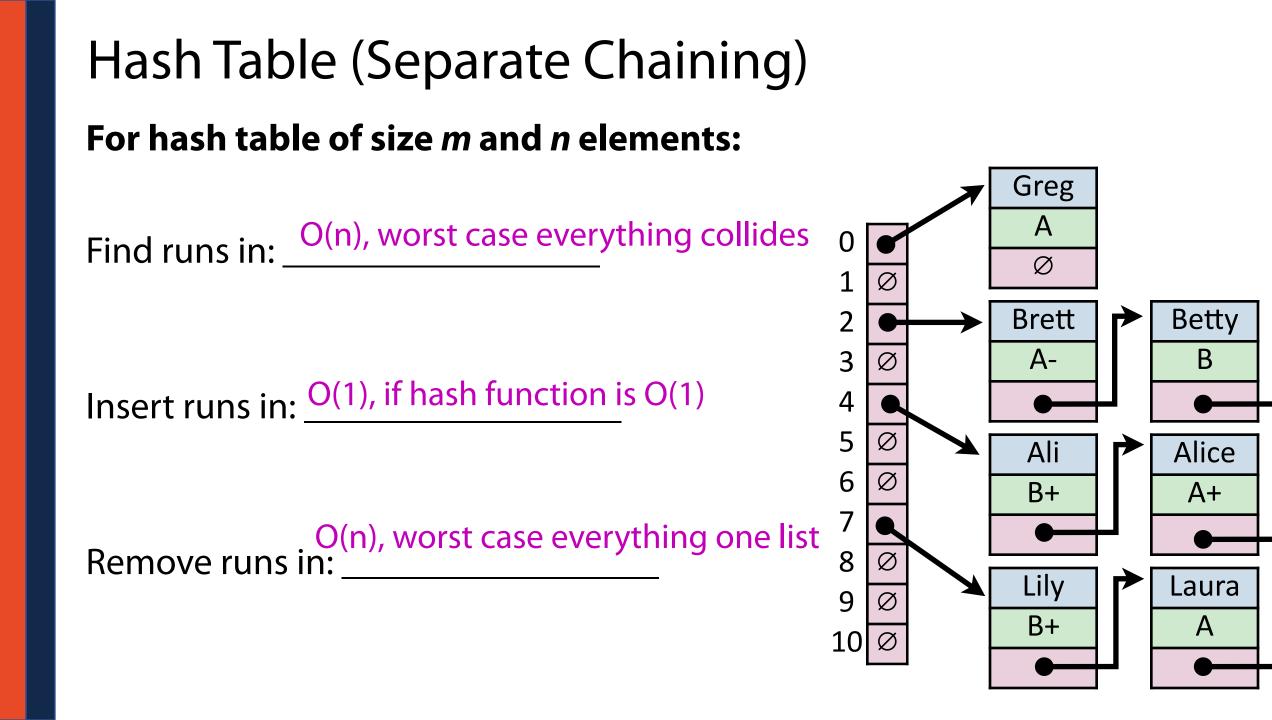


Hash Table (Separate Chaining)

Linked List InsertFront() — O(1)

Кеу	Value Hash	
Bob	B+	2
Anna	A-	4
Alice	A+	4
Betty	В	2
Brett	A-	2
Greg	А	0
Sue	В	7
Ali	B+	4
Laura	A 7	
Lily	B+	7





Hash Table

Worst-Case behavior is bad — but what about randomness?

1) Fix h, our hash, and assume it is good for all keys:

Simple Uniform Hashing Assumption SUHA is an assumption

(Assume our dataset hashes optimally)

2) Create a *universal hash function family:* This is real world SUHA

Given a collection of hash functions, pick one randomly

Like random quicksort if pick of hash is random, good expectation!

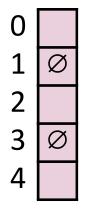
Simple Uniform Hashing Assumption

Given table of size *m*, a simple uniform hash, *h*, implies

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2 \text{ , } Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

Uniform: All keys are equally likely to hash anywhere $Pr(h[k_1] = 0) = \frac{1}{m}$

Independent: All keys hash independently of each other



Simple Uniform Hashing Assumption

Given table of size *m*, a simple uniform hash, *h*, implies

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2 \text{ , } Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

Uniform: All keys equally likely to hash to any position $Pr(h[k_1]) = \frac{1}{m}$

Independent: All key's hash values are independent of other keys

1

$$Pr(h[k_1] = i | h[k_2] = i) = Pr(h[k_1] = i) = \frac{1}{m}$$

Table Size: *m* Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is $\stackrel{n}{--}$ Num objects: *n* \mathcal{M} α_i = expected # of items hashing to position j $H_{i,j} = \begin{cases} 1 \text{ if item i hashes to } j \\ 0 \text{ otherwise} \end{cases}$ $\alpha_j = \sum H_{i,j}$ **Direct Proof!** Count expected # of items

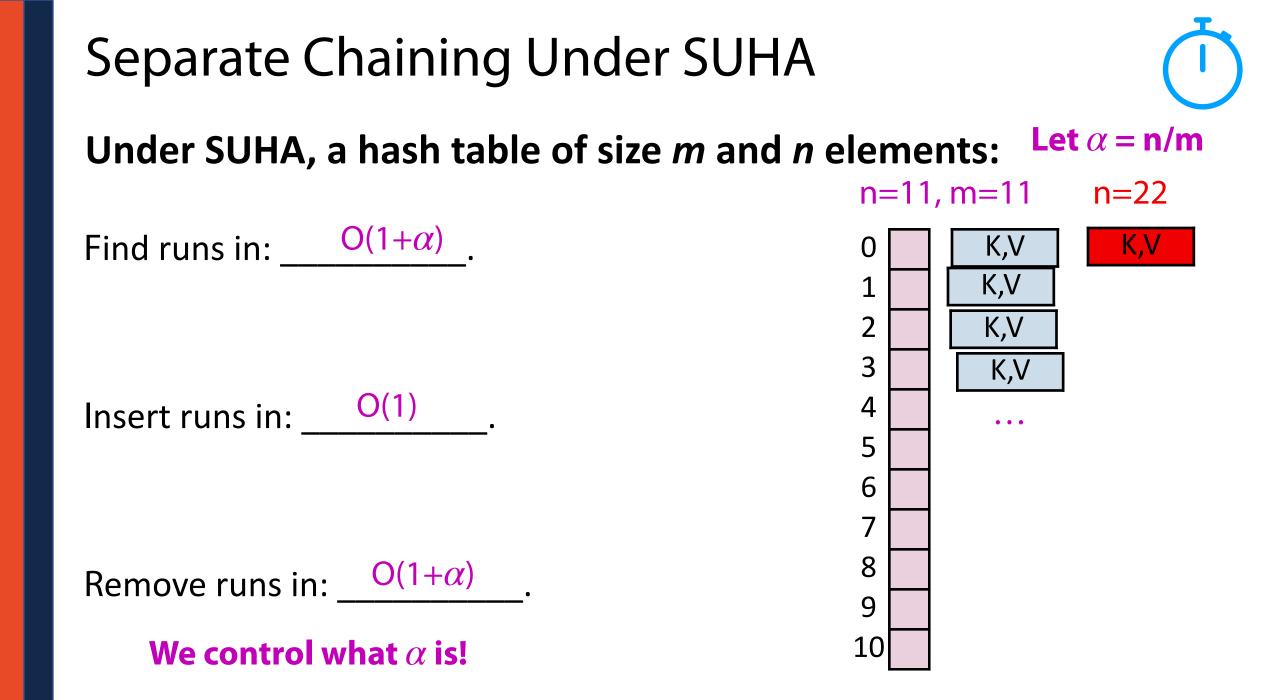
Table Size: *m* Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is $\stackrel{n}{--}$ Num objects: n \mathcal{M} α_i = expected # of items hashing to position j $H_{i,j} = \begin{cases} 1 \text{ if item i hashes to } j \\ 0 \text{ otherwise} \end{cases}$ $\alpha_j = \sum H_{i,j}$ $E[\alpha_j] = E\Big[\sum_i H_{i,j}\Big]$

Table Size: *m* Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is $\frac{n}{-}$ Num objects: n \mathcal{M} α_i = expected # of items hashing to position j $H_{i,j} = \begin{cases} 1 \text{ if item i hashes to } j \\ 0 \text{ otherwise} \end{cases}$ $\alpha_j = \sum H_{i,j}$ $E[\alpha_j] = E\left[\sum H_{i,j}\right] = \left[\sum E(H_{i,j})\right]$ $E[\alpha_j] = \sum Pr(H_{i,j} = 1) * 1 + Pr(H_{i,j} = 0) * 0$ Sum of probability * value

Table Size: m Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is $\stackrel{n}{--}$ Num objects: *n* \mathcal{M} α_i = expected # of items hashing to position j $H_{i,j} = \begin{cases} 1 \text{ if item i hashes to } j \\ 0 \text{ otherwise} \end{cases}$ $\alpha_j = \sum_i H_{i,j}$ $E[\alpha_j] = E\left[\sum H_{i,i}\right]$ $E[\alpha_j] = \sum Pr(H_{i,j} = 1) * 1 + Pr(H_{i,j} = 0) * 0$ $E[\alpha_i] = n * Pr(H_{i,i} = 1)$ Because we have n objects, sum is n * single object

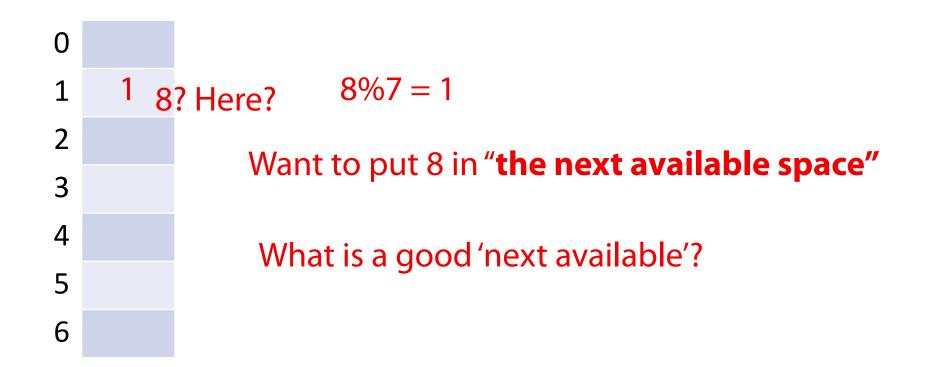
Table Size: m Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is $\stackrel{n}{--}$ Num objects: n \mathcal{M} α_i = expected # of items hashing to position j $H_{i,j} = \begin{cases} 1 \text{ if item i hashes to } j \\ 0 \text{ otherwise} \end{cases}$ $\alpha_j = \sum H_{i,j}$ $Pr[H_{i,j} = 1] = \frac{1}{m}$ $E[\alpha_j] = E\left[\sum H_{i,j}\right]$ Under SUHA, above probability is true! $E[\alpha_i] = n * Pr(H_{i,i} = 1)$

Separate Chaining Under SUHA n **Claim:** Under SUHA, expected length of chain is — Table Size: *m* \mathcal{M} Num objects: *n* α_i = expected # of items hashing to position j $H_{i,j} = \begin{cases} 1 \text{ if item i hashes to } j \\ 0 \text{ otherwise} \end{cases}$ $\alpha_j = \sum H_{i,j}$ $Pr[H_{i,j} = 1] = \frac{1}{m}$ $E[\alpha_j] = E\Big[\sum H_{i,j}\Big]$ $E[\alpha_{i}] = n * Pr(H_{i,i} = 1)$ $\mathbf{E}[\alpha_{\mathbf{j}}]$

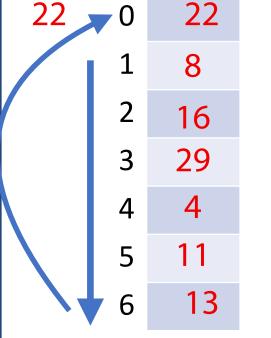


(Example of closed hashing)

Collision Handling: Probe-based Hashing S = { 1, 8 , 15} h(k) = k % 7 Array| = m



Collision Handling: Linear Probing **S** = { 16, 8, 4, 13, 29, 11, 22 } |**S**| = n h(k) = k % 7 |Array| = m

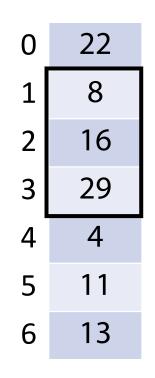


29%7 = 129%7+1 = 229%7+2 = 311%7=4

11%7+1=5

h(k, i) = (k + i) % 7 Try h(k) = (k + 0) % 7, if full... Try h(k) = (k + 1) % 7, if full... Try h(k) = (k + 2) % 7, if full... Try ...

22%7 = 1 22%7+1, +2, +3, +4, +5, +6 Collision Handling: Linear Probing **S** = { 16, 8, 4, 13, 29, 11, 22 } |S| = n h(k, i) = (k + i) % 7 |Array| = m



_find(29)

1) Hash the input key [h(29)=1]

2) Look at hash value (address) position If present, great! Done!

If not there...

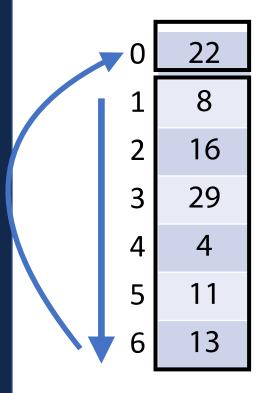
Look at **next available space**

Stop when:

1) We find the object we are looking for

2)

Collision Handling: Linear Probing **S** = { 16, 8, 4, 13, 29, 11, 22 } |S| = n h(k, i) = (k + i) % 7 |Array| = m



find(30)

1) Hash the input key [h(29)=1]

2) Look at hash value (address) position If present, great! Done!

If not there...

Stop when: Look a

Look at **next available space**

1) We find the object we are looking for

2) We have searched every position in the array

3)

Collision Handling: Linear Probing **S** = { 16, 8, 4, 13, 29, 11, 22 } |S| = n h(k, i) = (k + i) % 7 |Array| = m

_find(30)

Stop when:

0

2

3

4

5

6

11

13

1) Hash the input key [h(29)=1]

2) Look at hash value (address) position If present, great! Done!

If not there...

Look at **next available space**

We find the object we are looking for
We have searched every position in the array
We find a blank space

Collision Handling: Linear Probing S = { 16, 8, 4, 13, 29, 11, 22 } |S| = nh(k, i) = (k + i) % 7 |Array| = m remove(16) 22 1) Hash the input key [h(16)=2]0 8 2) Find the actual location (if it exists) 1 3) Remove the (k,v) at hash value (address) 1 bit flag 2 (something was 3 Don't resize the array! Tombstone! 29 4 inserted here before) 4 find(29) 5 11 With tombstoning, we can go past 2 6 13 Still blank but we know at some point it wasn't

A Problem w/ Linear Probing

Primary Clustering: "Rich get richer"

0	
1	11
2 3	1 ₂
3	3 1
4	1 ₃
	3 ₂
5 6	
7	
8	
9	

Description: Long clusters of items

What is the probability that the next item (in SUHA) ends up at 6?

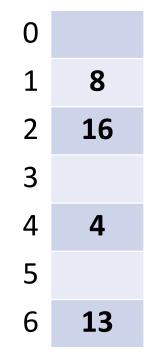
It should be 1/m but is it?

If hash to 1, insert at 6 If hash to 2, insert at 6

If hash to 3, insert at 6

```
(Example of closed hashing)
```

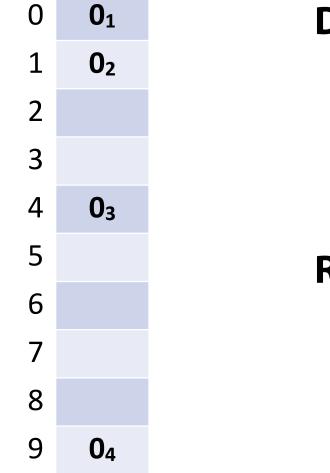
Collision Handling: Quadratic Probing **S** = { 16, 8, 4, 13, 29, 12, 22 } |**S**| = n h(k) = k % 7 |Array| = m



h(k, i) = (k + i*i) % 7 Try h(k) = (k + 0) % 7, if full... Try h(k) = (k + 1*1) % 7, if full... Try h(k) = (k + 2*2) % 7, if full... Try ...

A Problem w/ Quadratic Probing

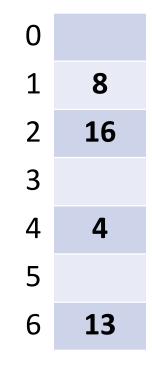
Secondary Clustering:



Description:

Remedy:

Collision Handling: Double Hashing $S = \{ 16, 8, 4, 13, 29, 11, 22 \}$ |S| = n $h_1(k) = k \% 7$ |Array| = m $h_2(k) = 5 - (k \% 5)$



 $\begin{aligned} h(k, i) &= (h_1(k) + i^*h_2(k)) \% 7 \\ Try h(k) &= (k + 0^*h_2(k)) \% 7, if full... \\ Try h(k) &= (k + 1^*h_2(k)) \% 7, if full... \\ Try h(k) &= (k + 2^*h_2(k)) \% 7, if full... \\ Try ... \end{aligned}$

Running Times (Don't memorize these equations, no need.) (Expectation under SUHA)

Open Hashing:

insert: _____.

find/ remove: ______.

Closed Hashing:

insert: _____.

find/ remove: ______.

Running Times (Don't memorize these equations, no need.) The expected number of probes for find(key) under SUHA

Linear Probing:

- Successful: ½(1 + 1/(1-α))
- Unsuccessful: ½(1 + 1/(1-α))²

Instead, observe:

- As α increases:

Double Hashing:

- Successful: 1/α * ln(1/(1-α))
- Unsuccessful: 1/(1-α)

Separate Chaining:

- Successful: $1 + \alpha/2$
- Unsuccessful: $1 + \alpha$

- If α is constant:

Running Times

The expected number of probes for find(key) under SUHA

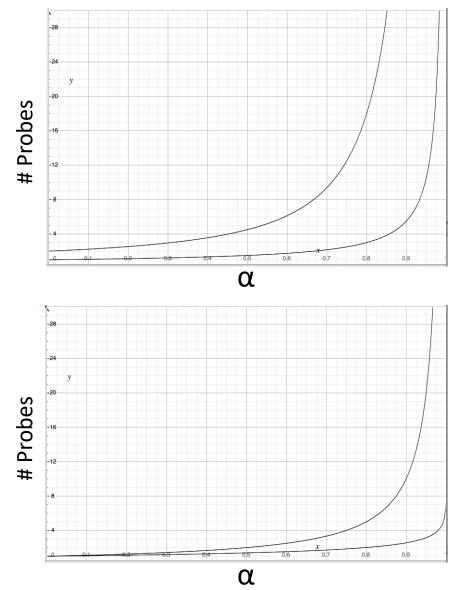
Linear Probing:

- Successful: ½(1 + 1/(1-α))
- Unsuccessful: ½(1 + 1/(1-α))²

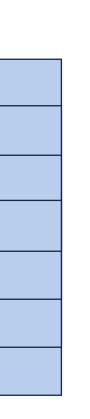
Double Hashing:

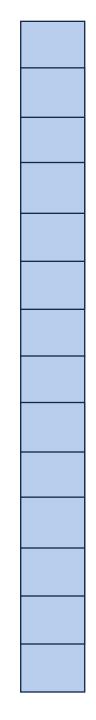
- Successful: 1/α * ln(1/(1-α))
- Unsuccessful: 1/(1-α)

When do we resize?



How do you resize?





Which collision resolution strategy is better?

- Big Records:
- Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn't exist with BSTs?

Why talk about BSTs at all?

Running Times

	Hash Table	AVL	Linked List
Find	Expectation*: Worst Case:		
Insert	Expectation*: Worst Case:		
Storage Space			