Data Structures and Algorithms Hashing 2

CS 225 Brad Solomon November 13, 2024

Ooops no tablet -_-

Department of Computer Science

Learning Objectives

Review fundamentals of hash tables

Introduce **closed hashing** approaches to hash collisions Want an $O(1)$ data structure! With probability we can get close in expectation!

Determine when and how to resize a hash table

Justify when to use different index approaches

A Hash Table based Dictionary

User Code (is a map):

Dictionary<KeyType, ValueType> d; $d[k] = v;$ **1 2**

A **Hash Table** consists of three things:

- 1. A hash function Assigns numeric (positive int) address to any key Key -> Hash Value (Address)
- 2. A data storage structure Array very good at lookup given **index** Hash Value (Address) is an index!

3. A method of addressing *hash collisions* Two different keys, same hash value

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

• Open Hashing: store *k,v* pairs externally

Such as a linked list

Resolve collisions by adding to list

• Closed Hashing: store *k,v* pairs in the hash table

0

3

 2 Alice /

Anna

Everything stored in one list

1 How to store collisions? Unclear!

Hash Table (Separate Chaining)

Linked List InsertFront() — O(1)

Hash Table

Worst-Case behavior is bad — but what about randomness?

1) **Fix** *h*, our hash, and assume it is good for *all keys*:

Simple Uniform Hashing Assumption SUHA is an assumption

(Assume our dataset hashes optimally)

2) Create a *universal hash function family:* This is real world SUHA

Given a collection of hash functions, pick one randomly

Like **random quicksort** if pick of hash is random, good expectation!

Simple Uniform Hashing Assumption

Given table of size m , a simple uniform hash, h , implies

$$
\forall k_1, k_2 \in U
$$
 where $k_1 \neq k_2$, $Pr(h[k_1] = h[k_2]) = \frac{1}{m}$

Uniform: All keys are equally likely to hash anywhere $Pr(h[k_1] = 0) =$ 1 *m*

Independent: All keys hash independently of each other

Simple Uniform Hashing Assumption

Given table of size m , a simple uniform hash, h , implies

$$
\forall k_1, k_2 \in U
$$
 where $k_1 \neq k_2$, $Pr(h[k_1] = h[k_2]) = \frac{1}{m}$

Uniform: All keys equally likely to hash to any position $Pr(h[k_1]) =$ 1 *m*

Independent: All key's hash values are independent of other keys

1

$$
Pr(h[k_1] = i | h[k_2] = i) = Pr(h[k_1] = i) = \frac{1}{m}
$$

Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is *n m* **Table Size:** *m* **Num objects:** *n* $H_{i,j} = \begin{cases}$ 1 if item i hashes to j 0 otherwise $\alpha_j = \sum H_{i,j}$ *i* α_i = expected # of items hashing to position j

Direct Proof! Count expected # of items

Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is *n m* **Table Size:** *m* **Num objects:** *n* $H_{i,j} = \begin{cases}$ 1 if item i hashes to j 0 otherwise $\alpha_j = \sum H_{i,j}$ *i* α_i = expected # of items hashing to position j $E[\alpha_j] = E[\sum_{j=1}^{n}$ $H_{i,j}$

i

Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is *n m* **Table Size:** *m* **Num objects:** *n* $H_{i,j} = \begin{cases}$ 1 if item i hashes to j 0 otherwise $\alpha_j = \sum H_{i,j}$ *i* α_i = expected # of items hashing to position j $E[\alpha_j] = E[\sum H_{i,j}] = [\sum E(H_{i,j})]$ *i i* $E[\alpha_j] = \sum Pr(H_{i,j} = 1) * 1 + Pr(H_{i,j} = 0) * 0$ *i* Sum of probability * value

Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is *n m* **Table Size:** *m* **Num objects:** *n* $H_{i,j} = \begin{cases}$ 1 if item i hashes to j 0 otherwise $\alpha_j = \sum$ *i* $H_{i,j}$ α_i = expected # of items hashing to position j $E[\alpha_j] = E[\sum H_{i,j}]$ *i* $E[\alpha_j] = \sum Pr(H_{i,j} = 1) * 1 + Pr(H_{i,j} = 0) * 0$ *i* $E[\alpha_j] = n * Pr(H_{i,j} = 1)$ Because we have n objects, sum is n * single object

Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is *n m* **Table Size:** *m* **Num objects:** *n* $H_{i,j} = \begin{cases}$ 1 if item i hashes to j 0 otherwise $\alpha_j = \sum H_{i,j}$ *i* α_i = expected # of items hashing to position j $E[\alpha_j] = E[\sum_{j=1}^{n}$ *i* $H_{i,j}$ *Pr*[$H_{i,j} = 1$] = 1 *m* $E[\alpha_j] = n * Pr(H_{i,j} = 1)$ Under SUHA, above probability is true!

Separate Chaining Under SUHA **Claim:** Under SUHA, expected length of chain is $\frac{1}{10}$ Table Size: *m n m* **Num objects:** *n* $H_{i,j} = \begin{cases}$ 1 if item i hashes to j 0 otherwise $\alpha_j = \sum H_{i,j}$ *i* α_i = expected # of items hashing to position j $E[\alpha_j] = E[\sum_{j=1}^{n}$ *i* $H_{i,j}$ *Pr*[$H_{i,j} = 1$] = 1 *m* $E[\alpha_j] = n * Pr(H_{i,j} = 1)$ $\mathbf{E}[\alpha_j] =$ **n m**

(Example of closed hashing)

Collision Handling: Probe-based Hashing **h(k) = k % 7** $S = \{ 1, 8, 15 \}$ $|S| = n$ **|Array| = m**

Collision Handling: Linear Probing **|S| = n h(k) = k % 7 |Array| = m S = { 16, 8, 4, 13, 29, 11, 22 }**

 $29\%7 = 1$ $29\frac{67+1}{2} = 2$ $29\frac{67+2}{3} = 3$

 $11\%7=4$ $11\frac{2}{7} + 1 = 5$

h(k, i) = (k + i) % 7 Try h(k) = (k + 0) % 7, if full… Try h(k) = (k + 1) % 7, if full… Try h(k) = (k + 2) % 7, if full… Try …

 $22\%7=1$ $22\%7+1$, $+2$, $+3$, $+4$, $+5$, $+6$ Collision Handling: Linear Probing **|S| = n h(k, i) = (k + i) % 7 |Array| = m S = { 16, 8, 4, 13, 29, 11, 22 } _find(29)**

1) Hash the input key $[h(29)=1]$

2) Look at hash value (address) position If present, great! Done!

If not there…

Look at **next available space**

Stop when:

1) We find the object we are looking for

2)

(Example of closed hashing)

Collision Handling: Linear Probing **|S| = n h(k, i) = (k + i) % 7 |Array| = m S = { 16, 8, 4, 13, 29, 11, 22 }**

_find(30)

1) Hash the input key $[h(29)=1]$

2) Look at hash value (address) position If present, great! Done!

If not there…

Look at **next available space** Stop when:

1) We find the object we are looking for

- 2) We have searched every position in the array
- 3)

Collision Handling: Linear Probing **|S| = n h(k, i) = (k + i) % 7 |Array| = m S = { 16, 8, 4, 13, 29, 11, 22 }**

_find(30)

2) Look at hash value (address) position If present, great! Done!

If not there…

Look at **next available space** Stop when:

1) We find the object we are looking for 2) We have searched every position in the array 3) We find a blank space

Collision Handling: Linear Probing **|S| = n h(k, i) = (k + i) % 7 |Array| = m S = { 16, 8, 4, 13, 29, 11, 22 }** 0 22 1 8 2 3 29 4 4 5 11 6 13 **_remove(16)** 1) Hash the input key $[h(16)=2]$ 3) Remove the (k,v) at hash value (address) Don't resize the array! Tombstone! **_find(29)** With tombstoning, we can go past 2 1 bit flag (something was inserted here before) Still blank but we know at some point it wasn't 2) Find the actual location (if it exists)

A Problem w/ Linear Probing

Primary Clustering: "Rich get richer"

Description: Long clusters of items

What is the probability that the next item (in SUHA) ends up at 6?

It should be 1/m but is it?

If hash to 1, insert at 6 If hash to 2, insert at 6

If hash to 3, insert at 6

…

```
(Example of closed hashing)
```
Collision Handling: Quadratic Probing **h(k) = k % 7 S = { 16, 8, 4, 13, 29, 12, 22 } |S| = n |Array| = m**

h(k, i) = (k + i*i) % 7 Try h(k) = (k + 0) % 7, if full… Try h(k) = (k + 1*1) % 7, if full… Try h(k) = (k + 2*2) % 7, if full… Try …

A Problem w/ Quadratic Probing

Secondary Clustering:

Description:

Remedy:

Collision Handling: Double Hashing **|S| = n** $h_1(k) = k % 7$ | Array | = m **S = { 16, 8, 4, 13, 29, 11, 22 }** $h_2(k) = 5 - (k \times 5)$

 $h(k, i) = (h_1(k) + i^*h_2(k)) % 7$ **Try h(k) = (k + 0*h₂(k)) % 7, if full... Try h(k) = (k + 1*h₂(k)) % 7, if full... Try h(k) = (k + 2^{*}h₂(k)) % 7, if full... Try …**

Running Times *(Don't memorize these equations, no need.) (Expectation under SUHA)*

Open Hashing:

insert: __________.

find/ remove: $\frac{}{2}$.

Closed Hashing:

insert: __________.

find/ remove: The contract of the contract of

Running Times *(Don't memorize these equations, no need.) The expected number of probes for find(key) under SUHA*

Linear Probing:

Double Hashing:

- Successful: **½(1 + 1/(1-α))**
- Unsuccessful: **½(1 + 1/(1-α))2**

Instead, observe:

- As α increases:

- Successful: **1/α * ln(1/(1-α))**
- Unsuccessful: **1/(1-α)**

- If α is constant:

Separate Chaining:

- Successful: **1 + α/2**
- Unsuccessful: **1 + α**

Running Times

The expected number of probes for find(key) under SUHA

Linear Probing:

- Successful: **½(1 + 1/(1-α))**
- Unsuccessful: **½(1 + 1/(1-α))2**

Double Hashing:

- Successful: **1/α * ln(1/(1-α))**
- Unsuccessful: **1/(1-α)**

When do we resize?

Which collision resolution strategy is better?

- Big Records:
- Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn't exist with BSTs?

Why talk about BSTs at all?

Running Times

