
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon

November 13, 2024

Hashing 2

Ooops no tablet -_-

Learning Objectives

Introduce closed hashing approaches to hash collisions

Determine when and how to resize a hash table

Review fundamentals of hash tables

Justify when to use different index approaches

Want an O(1) data structure! With probability we can get close in expectation!

A Hash Table based Dictionary

Dictionary<KeyType, ValueType> d;
d[k] = v;

1
2

User Code (is a map):

A Hash Table consists of three things:

1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Assigns numeric (positive int) address to any key
Key -> Hash Value (Address)

Array — very good at lookup given index
Hash Value (Address) is an index!

Two different keys, same hash value

Open vs Closed Hashing

• Open Hashing: store k,v pairs externally

• Closed Hashing: store k,v pairs in the hash table

Addressing hash collisions depends on your storage structure.

0
1 ∅
2
3 ∅
4

Ali
B+

Alice
A+

Anna
A-
∅

Such as a linked list

Resolve collisions by adding to list

0
1

2 Alice /
Anna

3

Everything stored in one list
How to store collisions? Unclear!

Key Value Hash
Bob B+ 2

Anna A- 4
Alice A+ 4
Betty B 2
Bret A- 2
Greg A 0
Sue B 7
Ali B+ 4

Laura A 7
Lily B+ 7

0
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7
8 ∅
9 ∅

10 ∅

Greg
A
∅

Bret
A-

Betty
B

Bob
B+
∅

Ali
B+

Alice
A+

Anna
A-
∅

Lily
B+

Laura
A

Sue
B
∅

Hash Table (Separate Chaining)
Linked List InsertFront() — O(1)

Hash Table (Separate Chaining)

remove runs in: __________.

0
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7
8 ∅
9 ∅

10 ∅

Greg
A
∅

Bret
A-

Betty
B

Ali
B+

Alice
A+

Lily
B+

Laura
A

For hash table of size m and n elements:

Find runs in: _________________

Insert runs in: _________________

Remove runs in: _________________

O(n), worst case everything collides

O(n), worst case everything one list

O(1), if hash function is O(1)

Worst-Case behavior is bad — but what about randomness?

Hash Table

1) Fix h, our hash, and assume it is good for all keys:

2) Create a universal hash function family:

Simple Uniform Hashing Assumption

(Assume our dataset hashes optimally)

Given a collection of hash functions, pick one randomly

Like random quicksort if pick of hash is random, good expectation!

SUHA is an assumption

This is real world SUHA

Simple Uniform Hashing Assumption
Given table of size , a simple uniform hash, , implies

 where ,

m h

∀k1, k2 ∈ U k1 ≠ k2 Pr(h[k1] = h[k2]) =
1
m

Uniform: All keys are equally likely to hash anywhere

Independent: All keys hash independently of each other

Pr(h[k1] = 0) =
1
m

0
1 ∅
2
3 ∅
4

Simple Uniform Hashing Assumption
Given table of size , a simple uniform hash, , implies

 where ,

m h

∀k1, k2 ∈ U k1 ≠ k2 Pr(h[k1] = h[k2]) =
1
m

Uniform: All keys equally likely to hash to any position

Independent: All key’s hash values are independent of other keys

Pr(h[k1]) =
1
m

Pr(h[k1] = i |h[k2] = i) = Pr(h[k1] = i) =
1
m

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

Direct Proof! Count expected # of items

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j]

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j] = [∑
i

E(Hi,j)]
E[αj] = ∑

i

Pr(Hi,j = 1) * 1 + Pr(Hi,j = 0) * 0
Sum of probability * value

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j]
E[αj] = ∑

i

Pr(Hi,j = 1) * 1 + Pr(Hi,j = 0) * 0

E[αj] = n * Pr(Hi,j = 1) Because we have n objects, sum is n * single object

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j] Pr[Hi,j = 1] =
1
m

E[αj] = n * Pr(Hi,j = 1)
Under SUHA, above probability is true!

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j] Pr[Hi,j = 1] =
1
m

E[αj] = n * Pr(Hi,j = 1)

E[αj] =
n
m

Separate Chaining Under SUHA

Under SUHA, a hash table of size m and n elements:

Find runs in: __________.

Insert runs in: __________.

Remove runs in: __________.

0
1
2
3
4
5
6
7
8
9

10

O(1)

O(1+)α K,V

n=11, m=11

K,V
K,V
K,V
…

n=22
K,V

Let = n/mα

O(1+)α

We control what is!α

Collision Handling: Probe-based Hashing
(Example of closed hashing)

0
1
2
3
4
5
6

h(k) = k % 7
S = { 1, 8 , 15} |S| = n

|Array| = m

1 8%7 = 18? Here?

Want to put 8 in “the next available space”

What is a good ‘next available’?

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k) = k % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k, i) = (k + i) % 7
Try h(k) = (k + 0) % 7, if full…
Try h(k) = (k + 1) % 7, if full…
Try h(k) = (k + 2) % 7, if full…
Try …

0
1
2
3
4
5
6

16
8

4

13

29%7 = 1
29%7+1 = 2
29%7+2 = 3

29
11%7=4
11%7+1=511

22%7 = 1
22%7+1, +2, +3, +4, +5, +6

2222

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k, i) = (k + i) % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

0 22

1 8

2 16

3 29

4 4

5 11

6 13

_find(29)

1) Hash the input key [h(29)=1]

2) Look at hash value (address) position
If present, great! Done!
If not there…
Look at next available space

Stop when:
1) We find the object we are looking for
2)

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k, i) = (k + i) % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

0 22

1 8

2 16

3 29

4 4

5 11

6 13

_find(30)

1) Hash the input key [h(29)=1]

2) Look at hash value (address) position
If present, great! Done!
If not there…
Look at next available spaceStop when:

1) We find the object we are looking for
2) We have searched every position in the array
3)

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k, i) = (k + i) % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

0 22

1 8

2 16

3 29

4
5 11

6 13

_find(30)

1) Hash the input key [h(29)=1]

2) Look at hash value (address) position
If present, great! Done!
If not there…
Look at next available spaceStop when:

1) We find the object we are looking for
2) We have searched every position in the array
3) We find a blank space

If 30 existed,
would have
been at 4

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k, i) = (k + i) % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

0 22

1 8

2
3 29

4 4

5 11

6 13

_remove(16)
1) Hash the input key [h(16)=2]

3) Remove the (k,v) at hash value (address)

Don’t resize the array! Tombstone!

_find(29)
With tombstoning, we can go past 2

1 bit flag

(something was

inserted here before)

Still blank but we know at some point
it wasn’t

2) Find the actual location (if it exists)

A Problem w/ Linear Probing

0
1 11

2 12

3 31

4 13

5 32

6
7
8
9

Primary Clustering:

Description: Long clusters of items

What is the probability that the next item (in SUHA) ends up at 6?

It should be 1/m but is it?

If hash to 1, insert at 6
If hash to 2, insert at 6
If hash to 3, insert at 6

…

“Rich get richer”

Collision Handling: Quadratic Probing
(Example of closed hashing)

h(k) = k % 7
S = { 16, 8, 4, 13, 29, 12, 22 }

h(k, i) = (k + i*i) % 7
Try h(k) = (k + 0) % 7, if full…
Try h(k) = (k + 1*1) % 7, if full…
Try h(k) = (k + 2*2) % 7, if full…
Try …

0
1 8
2 16
3
4 4
5
6 13

|S| = n
|Array| = m

A Problem w/ Quadratic Probing

0 01

1 02

2
3
4 03

5
6
7
8
9 04

Secondary Clustering:

Description:

Remedy:

Collision Handling: Double Hashing
(Example of closed hashing)

|S| = n
|Array| = mh1(k) = k % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k, i) = (h1(k) + i*h2(k)) % 7
Try h(k) = (k + 0*h2(k)) % 7, if full…
Try h(k) = (k + 1*h2(k)) % 7, if full…
Try h(k) = (k + 2*h2(k)) % 7, if full…
Try …

0
1 8
2 16
3
4 4
5
6 13

h2(k) = 5 - (k % 5)

Running Times
Open Hashing:

Closed Hashing:

insert: __________.

find/ remove: __________.

insert: __________.

find/ remove: __________.

(Don’t memorize these equations, no need.)
(Expectation under SUHA)

Running Times
Linear Probing:

• Successful: ½(1 + 1/(1-α))

• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:

• Successful: 1/α * ln(1/(1-α))

• Unsuccessful: 1/(1-α)

Separate Chaining:

• Successful: 1 + α/2

• Unsuccessful: 1 + α

The expected number of probes for find(key) under SUHA
(Don’t memorize these equations, no need.)

Instead, observe:

- As α increases:

- If α is constant:

Running Times
Linear Probing:

• Successful: ½(1 + 1/(1-α))

• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:

• Successful: 1/α * ln(1/(1-α))

• Unsuccessful: 1/(1-α)

When do we resize?

The expected number of probes for find(key) under SUHA

Pr

ob
es

Pr

ob
es

α

α

Resizing a hash table
How do you resize?

Which collision resolution strategy is better?

•	 Big Records:

•	 Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn’t exist with BSTs?

Why talk about BSTs at all?

Running Times
Hash Table AVL Linked List

Find

Expectation*:

Worst Case:

Insert

Expectation*:

Worst Case:

Storage Space

