
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon

November 8, 2024

Probability in Computer Science

Exam 4 (11/13 — 11/15)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam will be on PL

Topics covered can be found on website

Registration started October 31

https://courses.engr.illinois.edu/cs225/fa2024/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Distinguish the three main types of ‘random’ in computer science

Review fundamentals of probability in computing

Formalize the concept of randomized algorithms

Randomized Algorithms
A randomized algorithm is one which uses a source of randomness
somewhere in its implementation.

0
1 ∅
2
3
4

Greg

Frank

Be/y
Anna

Francis
Peter

Figure from Ondov et al 2016

0
1
0
0
1

H(z)

0 2 1 0 0 4 0 2 0 6
1 0 2 3 1 0 3 4 0 1
2 1 0 2 0 1 0 0 7 2

H(x)
H(y)
H(z)

A faulty list
Imagine you have a list ADT implementation except…

Every time you called insert, it would fail 50% of the time.

Quick Primes with Fermat’s Primality Test
If is prime and is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if is composite and n an−1 ≡ 1 (mod n)

Fundamentals of Probability
Imagine you roll a pair of six-sided dice.

The sample space is the set of all possible outcomes.Ω

An event is any subset.E ⊆ Ω

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

E[X] = ∑
x∈Ω

Pr{X = x} ⋅ x

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables and ,X Y
 (Claim)E[X + Y] = E[X] + E[Y]

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables and ,X Y
E[X + Y] = E[X] + E[Y]

E[X + Y] = ∑
x

∑
y

Pr{X = x, Y = y}(x + y)

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables and ,X Y
E[X + Y] = E[X] + E[Y]

E[X + Y] = ∑
x

∑
y

Pr{X = x, Y = y}(x + y)

E[X + Y] = ∑
x

x∑
y

Pr{X = x, Y = y} + ∑
y

y∑
x

Pr{X = x, Y = y}

E[X + Y] = ∑
x

x ⋅ Pr{X = x} + ∑
y

y ⋅ Pr{Y = y}

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables and ,X Y
E[X + Y] = E[X] + E[Y]

E[X + Y] = ∑
x

∑
y

Pr{X = x, Y = y}(x + y)

E[X + Y] = ∑
x

x∑
y

Pr{X = x, Y = y} + ∑
y

y∑
x

Pr{X = x, Y = y}

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables and ,X Y
E[X + Y] = E[X] + E[Y]

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Claim: is S(n) O(n log n)

N=3: AllBuild() with every possible permutation of insert order

312

3 12

31 2

21 3

13 2

23 1

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

31

2

31

23

1

2

2

1

3

1

3

2

2

3

1

N=3:

Claim: is S(n) O(n log n)

Average-Case Analysis: BST

S(n) = (n − 1) +
1
n

n−1

∑
i=0

S(i) + S(n − i − 1) ≈ cn ln n

Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Let be the number of nodes in the left subtree.0 ≤ i ≤ n − 1

Then for a fixed , i S(n) = (n − 1) + S(i) + S(n − i − 1)

S(n) = (n − 1) +
2
n

n−1

∑
i=1

S(i)

S(n) ≤ (n − 1) +
2
n ∫

n

1
(cx ln x)dx

S(n) = (n − 1) +
2
n

n−1

∑
i=1

(ci ln i)

S(n) ≤ (n − 1) +
2
n (cn2

2
ln n −

cn2

4
+

c
4) ≈ cn ln n

Here’s a slide of math you should not bother learning
(in the context of CS 225)

(1) Guess recurrence form S(i) = c * i ln(i)

(2) Plug in recurrence

(3)
n−1

∑
i=1

f(i) ≡ ∫
n

1
f(x)dx

(4) can be expanded as shown above.∫ (cx lnx) dx

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

 is provable but a weak argument! Why?S(n) ≈ (n log n)

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

 is provable but a weak argument! Why?S(n) ≈ (n log n)

Randomness: Input dataset is considered random

Assumptions: Input dataset is uniform random in content and order

Arguably to extend analysis to ‘find’ we also assume query is random.

Same assumptions then extended to query

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Quicksort Algorithm
1) Pick Pivot (usually last item)

2) Split array around pivot

3) Recurse on partitions

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Problem: Bad pivot leads to bad Big O!

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

…

Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is for any input!O(n log n)

Key Idea: We never compare same pair twice!

Proof: Every comparison is against a pivot, but pivot not used in recursion

Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is for any input!O(n log n)
Let be the total comparisons and be an indicator variable:X Xij

Xij = {
1 if ith object compared to jth

0 if ith object not compared to jth

Then…

Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is for any input!O(n log n)
Let be the total comparisons and be an indicator variable:X Xij

Xij = {
1 if ith object compared to jth

0 if ith object not compared to jth

Then… X =
n

∑
i=1

n

∑
j=i+1

Xi,j

We can prove that with a proof by induction!E[X] = O(n log n)

Expectation Analysis: Randomized Quicksort

Claim: . E[Xi,j] =
2

j − i + 1
Base Case: (N=2)

To show , we need to first get E[X] = O(n log n) E[Xi,j]

Expectation Analysis: Randomized Quicksort

Claim: E[Xi,j] =
2

j − i + 1
Induction: Assume true for all inputs of < n

Expectation Analysis: Randomized Quicksort

E[X] =
n

∑
i=1

n

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1

Expectation Analysis: Randomized Quicksort

E[X] =
n

∑
i=1

n

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1

E[X] =
n

∑
i=1

2(1
2

+
1
3

+ . . . +
1

n − i + 1)

Expectation Analysis: Randomized Quicksort

E[X] =
n

∑
i=1

n

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1

E[X] =
n

∑
i=1

2(1
2

+
1
3

+ . . . +
1

n − i + 1)

E[X] =
n

∑
i=1

2(Hn−1 − 1) ≤ 2n ⋅ Hn ≤ 2n ln n

Expectation Analysis: Randomized Quicksort

E[X] =
n

∑
i=1

n

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1

E[X] =
n

∑
i=1

2(1
2

+
1
3

+ . . . +
1

n − i + 1)

E[X] =
n

∑
i=1

2(Hn−1 − 1)

(3) Hn = θ(log n)

(1) Expand out inner sum

(2) Hn = 1 +
1
2

+
1
3

+ . . .

E[X] =
n

∑
i=1

2(Hn−1 − 1) ≤ 2n ⋅ Hn ≤ 2n ln n

Expectation Analysis: Randomized Quicksort

Summary: Randomized quick sort is regardless of inputO(n log n)

Randomness:

Assumptions:

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Probabilistic Accuracy: Fermat primality test

If is prime and is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if is composite and n an−1 ≡ 1 (mod n)

Pick a random in the range a [2, p − 2]

Probabilistic Accuracy: Fermat primality test
ap−1 ≡ 1 (mod p) ap−1 ≢ 1 (mod p)

 is primep

 is not primep

Probabilistic Accuracy: Fermat primality test
Let’s assume α = .5

First trial: and prime test returns ‘prime!’ a = a0

Is our number prime?

Second trial: and prime test returns ‘prime!’ a = a1

Third trial: and prime test returns ‘not prime!’ a = a2

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test
Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Types of randomized algorithms
A Las Vegas algorithm is a randomized algorithm which will always
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a
fixed number of iterations and may give the correct answer.

Next Class: Randomized Data Structures
Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures ‘cheat’ tradeoffs!

