Data Structures and Algorithms

Probability in Computer Science

CS 225 November 8, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Exam4 (11/13 — 11/15)

Autograded MC and one coding question
Manually graded short answer prompt
Practice exam will be on PL

Topics covered can be found on website

Registration started October 31

https://courses.engr.illinois.edu/cs225/fa2024/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Formalize the concept of randomized algorithms
Review fundamentals of probability in computing

Distinguish the three main types of random’in computer science

Randomized Algorithms

A randomized algorithm is one which uses a source of randomness
somewhere in its implementation.

‘_/v 1 119
0 2 | @+=—>| Frank =¥ [Francis
0 3 [@r—>| Anna |—> Peter
1 4 |@—>| Betty

Figure from Ondov et al 2016

A faulty list

Imagine you have a list ADT implementation except...

Every time you called insert, it would fail 50% of the time.

Quick Primes with Fermat’s Primality Test

If p is prime and a is not divisible by p, then a”~! = 1 (mod p)

But... sometimes if n is composite and "' = 1 (mod n)

Fundamentals of Probability

Imagine you roll a pair of six-sided dice.

The sample space €2 is the set of all possible outcomes.

An event £ C Q2 is any subset.

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

E[X]=) Pr{X=x}-x

xell

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =E|X]+ E|Y] (Claim)

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

E[X + Y] = E[X] + E[Y]
EX+Y]=) Y PriX=xY=y}(x+y)
Xy

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

E[X + Y] = E[X] + E[Y]
EX+Y]=) Y PriX=xY=y}(x+y)

Xy
=Y x Y PriX=xY=y}+ » y» PriX=xY=y)
X y y X

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

E[X + Y] = E[X] + E[Y]
EIX+Y]=) Y PriX=x.Y=y}(x+y)

Xy
=Y x Y PriX=xY=y}+ » y» PriX=xY=y)
X y y X

=Y x-PriX=x}+) y Pr{Y=y)
X Y

Fundamentals of Probability @

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =EX]|+ E|Y]

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Claim: S(n) is O(n log n)

N=3: AllIBuild() with every possible permutation of insert order

OO OO OO
OO OO OO

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Claim: S(n) is O(n log n)

G
(AR

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Let) <1 < n —1bethe number of nodes in the left subtree.

Thenforafixedi, S(n) =n—-1)+SGO)+Sn—-i—-1)

1n—1 . .
S(n)=(n—1)+—ZS(Z)+S(n—l—1)zcn In n
=0

Here’s a slide of math you should not bother learning
(in the context of CS 225)

2 n—1
Sm)y=m—-1)+ P 2 5(2) (1) Guess recurrence form S(i) = ¢ *i In(i)
i=1
2 n—1
Sm)y=m—-1)+— Z (ci In i) (2)Plugin recurrence
S

n n—1 n
Sn) <(n—1)+ %J (cx In x)dx (3) Zf(i) — J f(x)dx
i=1 1

nJ;

2 (cn? cn® ¢

lnn——+—)zcnlnn
4 4

Sn)<(n—-1)+

n

(4) [(cx [nx) dx can be expanded as shown above.

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

S(n) = (n log n)is provable but a weak argument! Why?

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

S(n) = (n log n)is provable but a weak argument! Why?

Randomness: Input dataset is considered random

Arguably to extend analysis to ‘find’ we also assume query is random.

Assumptions: Input dataset is uniform random in content and order

Same assumptions then extended to query

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Quicksort Algorithm
‘ 6 ‘ 1 ‘ 0 ‘ 3 ‘ 7 ‘ 9 ‘ 2 1) Pick Pivot (usually last item)

‘ 1 ‘ 0 ‘ 3 ‘ 2 9 ‘ 6 ‘ 7 ‘ 2) Split array around pivot

‘ 1 ‘ 0 ‘ 3 9 ‘ 6 3) Recurse on partitions
[1]o

1

Problem: Bad pivot leads to bad Big O!
el1fol3]7]o]2
BOBE DOujoRpBanaE
‘1‘0‘39‘6. of1]2]3]4]5 |CHEN
B0 0 0 _GiEEnn

Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.
Claim: The expected time is O(n log n) for any input!

Key Idea: We never compare same pair twice!

Proof: Every comparison is against a pivot, but pivot not used in recursion

Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is O(n log n) for any input!

Let X be the total comparisons and X;; be an indicator variable:

X.. =

{ 1 if ith object compared to jth
ij

0 if ith object not compared to jth

Then...

Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is O(n log n) for any input!

Let X be the total comparisons and X;; be an indicator variable:

X.. =

{ 1 if ith object compared to jth
ij

0 if ith object not compared to jth

Then... y _ i i X;

i=1 j=i+1

We can prove that E[X] = O(n log n) with a proof by induction!

Expectation Analysis: Randomized Quicksort
To show E[X]| = O(n log n), we need to first get ELX;]

Claim: E[X; ;| = — :
’ j—i+1

Base Case: (N=2)

Expectation Analysis: Randomized Quicksort

Claim: E[Xl-,j] = - Induction: Assume true for all inputs of < n

J—i+1
HEEEENE

Expectation Analysis: Randomized Quicksort

E[X] = 2 2 EIX;l EIX,] =-

i=1 j=i+1 J—i+1

Expectation Analysis: Randomized Quicksort

px1=Y Y EX) Epx,) =-

i=1 j=i+1 J—i+1
" I 1 1
E[X]=§2(5+§+”'+n—i+1)

Expectation Analysis: Randomized Quicksort

px1=Y Y EX) Epx,) =-

i=1 j=i+1 J—i+l

1
n—i+1

)

E[X]=22(%+%+...+
=1

EX]=) 2(H, ,—1)<2n-H,<2nlnn
=1

Expectation Analysis: Randomized Quicksort

px1=Y Y EX) Epx,) =-

i=1 j=i+1 J—i+1
E[X]—i2<l+l+ 4 1) 1) E Sout
= 27 3 T a—i+1 Xpand out inner sum
ElX]=) 2H, - 1) @H=1+ 1410
i=1

EX]=) 2(H, ,—1)<2n-H,<2nInn 3)H, = 6(log n)
=1

Expectation Analysis: Randomized Quicksort @

Summary: Randomized quick sortis O(n log n) regardless of input

Randomness:

Assumptions:

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Probabilistic Accuracy: Fermat primality test
Pickarandom a intherange [2, p — 2]

If p is prime and a is not divisible by p, then a”~! = 1 (mod p)

But... sometimes if n is composite and ¢! = 1 (mod n)

Probabilistic Accuracy: Fermat primality test

a’~'=1 (modp) | ¢ ' #1 (modp)

pis prime

p is not prime

Probabilistic Accuracy: Fermat primality test

Let’s assume o = .5

First trial: a = a, and prime test returns ‘prime!’
Second trial: @ = a; and prime test returns ‘prime!’
Third trial: a = a, and prime test returns ‘not prime!’

Is our number prime?

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test @

Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Types of randomized algorithms

A Las Vegas algorithm is a randomized algorithm which will always
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a
fixed number of iterations and may give the correct answer.

Next Class: Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures ‘cheat’ tradeoffs!

