Data Structures and Algorithms CS 225 Brad Solomon November 8, 2024 Probability in Computer Science

Department of Computer Science

Exam $4(11/13 - 11/15)$

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam will be on PL

Topics covered can be found on website

Registration started October 31

[https://courses.engr.illinois.edu/cs225/fa2024/exams/](https://courses.engr.illinois.edu/cs225/exams/)

Learning Objectives

Formalize the concept of randomized algorithms

Review fundamentals of probability in computing

Distinguish the three main types of 'random' in computer science

Randomized Algorithms

A **randomized algorithm** is one which uses a source of randomness somewhere in its implementation. $F:$ Table

H(*z*)

Figure from Ondov et al 2016

 $M'.\eta H$ ash $Shekch$

Sk:p 0 2 1 0 0 4 0 2 0 6 $H(x)$ *H*(*y*) 1 0 2 3 1 0 3 4 0 1 *H*(*z*)2 1 0 2 0 1 0 0 7 2

0

 Ω

1

0

0

1

Greg

Hash

Frank

Francis

Peter

Betty

Anna

1 ∅

2

3

4

A faulty list

Imagine you have a list ADT implementation *except*…

Every time you called **insert**, it would fail 50% of the time.

Quick Primes with Fermat's Primality Test If *p* is prime and *a* is not divisible by *p*, then $a^{p-1} \equiv 1 \pmod{p}$ But… **sometimes** if *n* is composite and $a^{n-1} \equiv 1 \pmod{n}$
 $\text{If } a = 2, \quad \lambda \mid g 55$ "Psendo primes" – $a + b$ Prime 35.10^{9} : 1tegers Not 100% arrurate but ... 99.9% arrurate & fast

Imagine you roll a pair of six-sided dice.

The **sample space** Ω is the set of all possible outcomes.

DJ

 123456

 $|D|$

An **event** $E \subseteq \Omega$ is any subset.

 PI rolls 2 and DJ is even

Imagine you roll a pair of six-sided dice. What is the expected value?

A **random variable** is a function from events to numeric values.

$$
DI
$$
 is value of filst disc \rightarrow

DBath 's value OF D1 +D2

The **expectation** of a (discrete) random variable is:

$$
E[X] = \sum_{x \in \Omega} Pr\{X = x\} \cdot x
$$

$$
E[D\downarrow] = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot \frac{1}{6} + \dots \quad \sim \quad 3.5
$$

$$
E[D\downarrow \text{Both}] = \frac{1}{36} \cdot 2 + \frac{1}{36} \cdot (1+2) + \dots \quad \sim \quad 7
$$

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables *X* and *Y*,

 $E[X + Y] = E[X] + E[Y]$ **(Claim)**

Imagine you roll a pair of six-sided dice. What is the expected value? **Linearity of Expectation:** For any two random variables *X* and *Y*,

 $E[X + Y] = E[X] + E[Y]$

$$
E[X+Y] = \sum_{x} \sum_{y} Pr\{X = x, Y = y\}(x + y)
$$

Imagine you roll a pair of six-sided dice. What is the expected value? **Linearity of Expectation:** For any two random variables *X* and *Y*,

Sun of probabilities $E[X + Y] = E[X] + E[Y]$ $E[X+Y] = \sum \sum$ $Pr{X = x, Y = y}(x + y)$ *x y E*[*X* + *Y*] = ∑ *x*∑ $Pr{X = x, Y \neq y}$ + ∑ *y*∑ $Pr{X \neq x, Y = y}$ *x y y x*

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables *X* and *Y*,

E[*X* + *Y*] = ∑ *x* $x \cdot Pr\{X = x\} + \sum$ *y y* ⋅ *Pr*{*Y* = *y*} $E[X + Y] = E[X] + E[Y]$ $E[X+Y] = \sum \sum$ *x y* $Pr{X = x, Y = y}(x + y)$ $E = \sum x \sum Pr{X = x, Y = y} + \sum y \sum Pr{X = x, Y = y}$ *x y y x*

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables *X* and *Y*,

 $E[X + Y] = E[X] + E[Y]$ 3.5 3.5 \overline{C} 7

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Let $S(n)$ be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of *n* objects

Claim: $S(n)$ is $O(n \log n)$

N=3: AllBuild() with every possible permutation of insert order

2 1 3 2 3 1 1 2 3 1 3 2 3 2 1 3 1 2

Let $S(n)$ be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of *n* objects **Claim:** $S(n)$ is $O(n \log n)$ $6 \cdot 0 + 8 \cdot 1 + 1 \cdot 2 = \frac{16}{6}$ $\frac{1}{16}$ $\frac{1}{6}$ $\frac{1}{16}$

Let be the **average** total internal path length **over all BSTs** that *S*(*n*) can be constructed by uniform random insertion of *n* objects

Let $0 \le i \le n - 1$ be the number of nodes in the left subtree.

Then for a fixed *i*, $S(n) = (n-1) + S(i) + S(n-i-1)$

$$
S(n) = (n-1) + \frac{1}{n} \sum_{i=0}^{n-1} S(i) + S(n-i-1) \approx cn \ln n
$$

Here's a slide of math you should not bother learning (in the context of CS 225)

$$
S(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} S(i)
$$
 (1) Guess recurrence form $S(i) = c * i ln(i)$
\n
$$
S(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} (ci ln i)
$$
 (2) Plug in recurrence
\n
$$
S(n) \le (n-1) + \frac{2}{n} \int_{1}^{n} (cx ln x) dx
$$
 (3) $\sum_{i=1}^{n-1} f(i) \equiv \int_{1}^{n} f(x) dx$
\n
$$
S(n) \le (n-1) + \frac{2}{n} (\frac{cn^2}{2} ln n - \frac{cn^2}{4} + \frac{c}{4}) \approx cn ln n
$$

\n(4) $\int (cx ln x) dx$ can be expanded as shown above.

Let $S(n)$ be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of *n* objects

 $S(n) \approx (n \log n)$ is provable but a weak argument! Why?

Average-Case Analysis: BST^(ed) $O(n)$

Let $S(n)$ be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of *n* objects

 $S(n) \approx (n \log n)$ is provable but a weak argument! Why?

Randomness: Input dataset is considered random

Arguably to extend analysis to 'find' we also assume query is random.

Assumptions: Input dataset is uniform random in content and order

Same assumptions then extended to query

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Quicksort Algorithm

1) Pick Pivot (usually last item)

1 0 3 2 4 **9 6 7**

2) Split array around pivot

3) Recurse on partitions

1 0 2 **3** 4 **6** 7 **9**

1 0 2 3 4 6 7 9

0 **1** 2 3 4 6 7 9

Problem: Bad pivot leads to bad Big O!

In **randomized quicksort**, the selection of the pivot is random.

Claim: The expected time is *O*(*n log n*) *for any input!*

Key Idea: We never compare same pair twice!

Proof: Every comparison is against a pivot, but pivot not used in recursion

plust compares all items

Expectation Analysis: Randomized Quicksort In **randomized quicksort**, the selection of the pivot is random. **Claim:** The expected time is *O*(*n log n*) *for any input!* Let *X* be the total comparisons and X_{ij} be an **indicator variable**: 1 if *i*th object compared to *j*th $X_{ij} = \left\{$ 0 if *i*th object not compared to *j*th Then… $X = \{ \begin{array}{ccc} \leq & \leq & x_{i,j} \\ \vdots & \vdots & \ddots \end{array} \}$ $C = [2, n]$
 $\frac{1}{n} sin \theta 1$
 $y = [2, 1, n]$

Expectation Analysis: Randomized Quicksort In **randomized quicksort**, the selection of the pivot is random. **Claim:** The expected time is *O*(*n log n*) *for any input!* Let *X* be the total comparisons and X_{ij} be an **indicator variable**:

$$
X_{ij} = \begin{cases} 1 & \text{if } i \text{th object compared to } j \text{th} \\ 0 & \text{if } i \text{th object not compared to } j \text{th} \end{cases}
$$

Then...
$$
X = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (X_{i,j}) \leftarrow E\left[\begin{matrix} X_{i,j} \\ \end{matrix}\right]
$$

We can prove that $E[X] = O(n \log n)$ with a **proof by induction**!

Expectation Analysis: Randomized Quicksort To show $E[X] = O(n\,\,log\,n)$, we need to first get $E[X_{i,j}]$

2 ${\bf Claim: } E[X_{i,j}] =$ **Induction:** Assume true for all inputs of < *nj* − *i* + 1 $\frac{2}{0-it1} \cdot (P[i(P) + P[iZi] + P[iS] + P[iS])$

n n 2 $E[X] =$ $E[X_{ij}]$ $E[X_{ij}]$ = ∑ ∑ *j* − *i* + 1*i*=1 *j*=*i*+1 X is fotal comparisors

$$
E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}
$$

$$
E[X] = \sum_{i=1}^{n} 2(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-i+1}) \qquad \qquad \downarrow \qquad + \frac{1}{2} \downarrow \frac{1}{3} \downarrow \frac{1}{4} \ldots
$$

$$
H_{n} = \Theta(log n)
$$

$$
E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}
$$

Summary: Randomized quick sort is *O*(*n log n*) regardless of input

Randomness: Choile of pivat

Assumptions: $N_{O,Ne}$ on data/distribution Is can we get a cent candom #?

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time 160% accusts byt maybe slow Randomized quicksart $J_{o(i)}$

3. Use randomness inside algorithm to approximate solution in fixed time

Probabilistic Accuracy: Fermat primality test Pick a random *a* in the range $[2, p-2]$

If *p* is prime and *a* is not divisible by *p*, then $a^{p-1} \equiv 1 \pmod{p}$

But… *sometimes* if *n* is composite and $a^{n-1} \equiv 1 \pmod{n}$

Probabilistic Accuracy: Fermat primality test

Let's assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

What is our **false positive** probability? Our **false negative** probability?

Probabilistic Accuracy: Fermat primality test

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Types of randomized algorithms

A **Las Vegas** algorithm is a randomized algorithm which will always give correct answer if run enough times but has no fixed runtime.

A **Monte Carlo** algorithm is a randomized algorithm which will run a fixed number of iterations and may give the correct answer.

Next Class: Randomized Data Structures

Sometimes a data structure can be **too ordered / too structured**

Randomized data structures rely on **expected** performance

Randomized data structures 'cheat' tradeoffs!