Data Structures and Algorithms

Probability in Computer Science

CS 225 November 8, 2024
Brad Solomon

/o
UNIVERSITY OF 8 8§
ILLINOIS =3

URBANA-CHAMPAIGN

Department of Computer Science

Exam4 (11/13 — 11/15)

Autograded MC and one coding question
Manually graded short answer prompt
Practice exam will be on PL

Topics covered can be found on website

Registration started October 31

https://courses.engr.illinois.edu/cs225/fa2024/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Formalize the concept of randomized algorithms

Review fundamentals of probability in computing

/\/‘\/

Distinguish the three main types of random’in computer science

Randomized Algorithms

A randomized algorithm is one which uses a source of randomness

somewhere in its implementation. X loon £t
Hash T"MQ/
O:—) Greg
1|2
2 | @1=—>| Frank ¥ [Francis
3 [@1—>[Anna > | Peter
4 | &> Betty
Figure from Ondov et al 2016 H()C) 021000 2 0 6 S'I(\P
M. 2 Hech H(y) 1 0213103401 11
HiZz 210201007 2

Ske +h

A faulty list

Imagine you have a list ADT implementation except...

Every time you called insert, it would fail 50% of the time.

L7 (,O\A\é U Se "‘O S‘\M \a\q\-q e Peq\'ﬁé (o:/\ €\-\F5
L?’ wc\> ?qy: CO\(\,\Q

S (omting (n gn D0 e Steam

C VoL
7 PfO\M\:\\S\K ()q\‘a\ C\f’an.\/\j

Peal ‘hems haw Woh Ceveven ad fhe fermas deit

Quick Primes with_Fermat'’s Primality Test

- e' Y- 33
[[] L i o L4 o _1 —
If p is prime and a is not divisible by p, thena”™" = 1 (mod p)

But... sometimes if 11 is composite and a”~! = 1 (mod n) |
\ oo = ey P
If a=) } > l/g 53 P3¢ude pr.ses but Pass e s

o=

3% +lo laYesess

(\IO)' \Oc)yo a[((u(ad‘a but ... 4.7 (L wrate 4 ot

Fundamentals of Probability

Imagine you roll a pair of six-sided dice.

The sample space €2 is the set of all possible outcomes. b
1934S¢
-
D) 3
4
¢ — ¢

An event £ C Q2 is any subset.
Pl e 2 an D) & eve..

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.
Dl L Jale of LUk Jle >

D Rath & vaue 9F D1 4D

The expectation of a (discrete) random variable is:
E[Pl] p -G,_ - ‘I’é;) +.. X 3.8
E[X] = Z PriX=x)-x

x€eQ - | | .
Eoh) = g2ty (e 2/

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =E|X]+ E|Y] (Claim)

\

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

E[X + Y] = E[X] + E[Y]
E[X+Y]= Z ZPr{X—x Y=yl(x+)

o Value of @V"JH‘

P(a\> ol fUM

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
Sl«m,, of ?/exw.\;.‘\ HTPS

EIX+Y|=E|IX]|+E|Y]
@

EX+Y]=) ZPr{X=x,Y=y}(x+yR

X yf
= ZxZPr{X = X, Y/t/y} + Zy/Z/Pr{X#c, Y=y}
X y/ - y X

/"

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

1 B,

EX+Y]=) Y PriX=xY=y}(x+y)

Xy
=Y x Y PriX=xY=y}+ » y» PriX=xY=y)
X y y X

Fundamentals of Probability @

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =EX]|+ E|Y]

3.8 3.5

=/

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

- = J ¥

N

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Claim: S(n) is O(n log n)

N=3: AllIBuild() with every possible permutation of insert order

OOG 000 DO
000 000 OO

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects/ patls [eas ¥ A

Claim: S(n) is O(n log n) 6“0 % 41 +v2) = Ig/é X246

"‘lces

@k&fi

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Let) <1 < n —1bethe number of nodes in the left subtree.

 °
Then for a fixed i, S(n) SAG)+S(n—1— 1)]
_,, Iusi

Sm)y=mn-1)+— ZS(Z)+S(n—l—1)~cnlnn /,y
lO
S(<
T\
/| ~ | I'I'Cwu{ \(L/ TQI
Lllf(I

L O s

Here’s a slide of math you should not bother learning
(in the context of CS 225)

2 n—1
Sm)y=m—-1)+ P 2 5(2) (1) Guess recurrence form S(i) = ¢ *i In(i)
i=1
2 n—1
Sm)y=m—-1)+— Z (ci In i) (2)Plugin recurrence
S

n n—1 n
Sn) <(n—1)+ %J (cx In x)dx (3) Zf(i) — J f(x)dx
i=1 1

nJ;

2 (cn? cn® ¢

lnn——+—)zcnlnn
4 4

Sn)<(n—-1)+

n

(4) [(cx [nx) dx can be expanded as shown above.

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

S(n) = (n log n)is provable but a weak argument! Why?
I— —————

Average-Case Analysis: BST = O(r) Q\B\l

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

S(n) = (n log n)is provable but a weak argument! Why?

Randomnes@ataset is considered ran’do@

Arguably to extend analysis to ‘find’ we also assume query is random.

Assumptions: Input dataset is uniform random in content and order
\

Same assumptions then extended to query

O

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Quicksort Algorithm
‘ 6 ‘ 1 ‘ 0 ‘ 3 ‘ 7 ‘ 9 ‘ 2 1) Pick Pivot (usually last item)

‘ 1 ‘ 0 ‘ 3 ‘ 2 9 ‘ 6 ‘ 7 ‘ 2) Split array around pivot

‘ 1 ‘ 0 ‘ 3 9 ‘ 6 3) Recurse on partitions
[1]o

1

Problem: Bad pivot leads to bad Big O!

R E R JO() y
R[] CEEEEE R
BOE : - gwsl EEBRBng :
Ba 5 0 bfoseen

Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is O(n log n) for any input!

Key Idea: We never compare same pair twice!

Proof: Every comparison is against a pivot, but pivot not used in recursion

%/(\l/\ ml P,\Jd\' <amPW'S gl ."’fwi

Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is O(n log n) for any input!

Let X be the total comparisons and X;; be an indicator variable:

o

X.. =

{ 1 if ith object compared to jth
ij

0 if ith object not compared to jth

Then... X: é é YL‘A‘ (— Di , {\j
[N
’ i<t @ L
VoC C£+|) r\D

e

Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is O(n log n) for any input!

Let X be the total comparisons and X;; be an indicator variable:

X.. =

{ 1 if ith object compared to jth
ij

0 if ith object not compared to jth

Then... y _ Z Z %) — E (%)

i=1 j=i+1

We can prove that E[X] = O(n log n) with a proof by induction!

Expectation Analysis: Randomized Quicksort
To show E[X] = O(n log n), we need to first get EX;]

2 A
CIaim:E[Xi,j] = P : E\\F\ /3

Base Case: (N=2) b/, > Z*L:s:nw(| d R, |
Fu [+T2)
\%/ - _2— = /] : ‘j‘ 1 (aMPq“\SOq
] -641 > T o 1
\>:A-._)7
n B

Expectation Analysis: Randomized Quicksort

Claim: E[Xi,j] = - Induction: Assume true for all inputs of < n

j—i+1

z

<« 9 —

Expectation Analysis: Randomized Quicksort

Claim: E[Xl-,j] = - Induction: Assume true for all inputs of < n

j—i+1
HEEEEEE
L f?ﬂié?)f P pei]+ Pl LS P§3J>
o t] \ A PosSble P | haites!

L/k/\/ L‘S?
N b ()

>

C)

Expectation Analysis: Randomized Quicksort

ElX] = 214 Zj[ELX;] =j_i2+1
.\ i=1 j=i+1

X 'g +<)\‘4‘ (o‘/ﬂh\f?s"/‘5

Expectation Analysis: Randomized Quicksort

E[X] = 2 2 EIX;l EIX,] =-

i=1 j=i+1 J—i+1
1 ‘Hq/Ma/\.\< ’\i_
n—i+1> f)__-é—‘- -l_l-t)~~-

E[X]=22(%+%+...+
=1

:);t“l _L’\é

Expectation Analysis: Randomized Quicksort

px1=Y Y EX) Epx,) =-

i=1 j=i+1 J—i+l
d
s I 1 1
EX]= Y 2(=4+—+...+
] Z <2 3 n—i+1>
i=1 —_— -

n A
EX]=) 2(H, ,—1)<2n-H,<2nlnn
i=1

N~

Expectation Analysis: Randomized Quicksort

px1=Y Y EX) Epx,) =-

i=1 j=i+1 J—i+1

= 27 3 T a—i+1 Xpand out inner sum
ElX]=) 2H, - 1) ST

i=1

A n 20

EX]=) 2(H, ,—1)<2n-H,<2nlnn 3)H, = 6(log n)
=1 *

Expectation Analysis: Randomized Quicksort @

Summary: Randomized quick sortis O(n log n) regardless of input

<

Randomness: |,/ of ?.\vé‘\‘

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time
(6o% adwstr byt ma,\/):c Sl

3‘/ ({OV\C)GM\LZPA qu.‘[kS&f‘\’ JO(:)

O Avs (ase s 304)-‘
3. Use randomness inside algorithm to approximate solution in fixed time

& Nk (65, G, Viate R Lo
(éz\:elmq*"; er‘.mq\\\}‘y '\‘{SA-

Probabilistic Accuracy: Fermat primality test
Pickarandom a intherange [2, p — 2]

If p is prime and a is not divisible by p, then a”~! = 1 (mod p)

But... sometimes if n is composite and ¢! = 1 (mod n)

Probabilistic Accuracy: Fermat primality test

a’~'=1 (modp) | ¢ ' #1 (modp)

pis prime

p is not prime

Probabilistic Accuracy: Fermat primality test

Let’s assume o = .5

First trial: a = a, and prime test returns ‘prime!’
Second trial: @ = a; and prime test returns ‘prime!’
Third trial: a = a, and prime test returns ‘not prime!’

Is our number prime?

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test @

Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Types of randomized algorithms

A Las Vegas algorithm is a randomized algorithm which will always
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a
fixed number of iterations and may give the correct answer.

Next Class: Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures ‘cheat’ tradeoffs!

