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Exam4 (11/13 — 11/15)

Autograded MC and one coding question
Manually graded short answer prompt
Practice exam will be on PL

Topics covered can be found on website

Registration started October 31

https://courses.engr.illinois.edu/cs225/fa2024/exams/
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Learning Objectives

Formalize the concept of randomized algorithms

Review fundamentals of probability in computing
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Distinguish the three main types of random’in computer science




Randomized Algorithms

A randomized algorithm is one which uses a source of randomness

somewhere in its implementation. X loon £t
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A faulty list

Imagine you have a list ADT implementation except...

Every time you called insert, it would fail 50% of the time.
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Quick Primes with_Fermat'’s Primality Test
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If p is prime and a is not divisible by p, thena”™" = 1 (mod p)

But... sometimes if 11 is composite and a”~! = 1 (mod n) |
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Fundamentals of Probability

Imagine you roll a pair of six-sided dice.

The sample space €2 is the set of all possible outcomes. b
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An event £ C Q2 is any subset.
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Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.
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The expectation of a (discrete) random variable is:
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Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =E|X]+ E|Y] (Claim)
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Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

E[X + Y] = E[X] + E[Y]
E[X+Y]= Z ZPr{X—x Y=yl(x+)
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Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
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EIX+Y|=E|IX]|+E|Y]
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EX+Y]=) ZPr{X=x,Y=y}(x+yR
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Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
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Fundamentals of Probability @

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =EX]|+ E|Y]
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Randomization in Algorithms

1. Assume input data is random to estimate average-case performance
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2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time



Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Claim: S(n) is O(n log n)

N=3: AllIBuild() with every possible permutation of insert order
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Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects/ patls [eas ¥ A

Claim: S(n) is O(n log n) 6“0 % 41 +v2) = Ig/é X246
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Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Let ) <1 < n —1bethe number of nodes in the left subtree.
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Here’s a slide of math you should not bother learning
(in the context of CS 225)
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Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

S(n) = (n log n)is provable but a weak argument! Why?
I— —————




Average-Case Analysis: BST = O(r) Q\B\l

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

S(n) = (n log n)is provable but a weak argument! Why?

Randomnes@ataset is considered ran’do@

Arguably to extend analysis to ‘find’ we also assume query is random.

Assumptions: Input dataset is uniform random in content and order
\

Same assumptions then extended to query
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Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time




Quicksort Algorithm
‘ 6 ‘ 1 ‘ 0 ‘ 3 ‘ 7 ‘ 9 ‘ 2 1) Pick Pivot (usually last item)

‘ 1 ‘ 0 ‘ 3 ‘ 2 9 ‘ 6 ‘ 7 ‘ 2) Split array around pivot

‘ 1 ‘ 0 ‘ 3 9 ‘ 6 3) Recurse on partitions
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Problem: Bad pivot leads to bad Big O!
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Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is O(n log n) for any input!

Key Idea: We never compare same pair twice!

Proof: Every comparison is against a pivot, but pivot not used in recursion
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Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is O(n log n) for any input!

Let X be the total comparisons and X;; be an indicator variable:

o
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{ 1 if ith object compared to jth
ij

0 if ith object not compared to jth
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Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is O(n log n) for any input!

Let X be the total comparisons and X;; be an indicator variable:

X.. =

{ 1 if ith object compared to jth
ij

0 if ith object not compared to jth

Then... y _ Z Z %) — E (%)

i=1 j=i+1

We can prove that E[X] = O(n log n) with a proof by induction!



Expectation Analysis: Randomized Quicksort
To show E[X] = O(n log n), we need to first get EX; ]
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Expectation Analysis: Randomized Quicksort

Claim: E[Xi,j] = - Induction: Assume true for all inputs of < n
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Expectation Analysis: Randomized Quicksort

Claim: E[Xl-,j] = - Induction: Assume true for all inputs of < n
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Expectation Analysis: Randomized Quicksort

ElX] = 214 Zj[ ELX;] =j_i2+1
.\ i=1 j=i+1
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Expectation Analysis: Randomized Quicksort

E[X] = 2 2 EIX;l  EIX,] =-
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Expectation Analysis: Randomized Quicksort
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Expectation Analysis: Randomized Quicksort

px1=Y Y EX) Epx,) =-

i=1 j=i+1 J—i+1

= 27 3 T a—i+1 Xpand out inner sum
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Expectation Analysis: Randomized Quicksort @

Summary: Randomized quick sortis O(n log n) regardless of input
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Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time
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3. Use randomness inside algorithm to approximate solution in fixed time
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Probabilistic Accuracy: Fermat primality test
Pickarandom a intherange [2, p — 2]

If p is prime and a is not divisible by p, then a”~! = 1 (mod p)

But... sometimes if n is composite and ¢! = 1 (mod n)




Probabilistic Accuracy: Fermat primality test

a’~'=1 (modp) | ¢ ' #1 (modp)

pis prime

p is not prime




Probabilistic Accuracy: Fermat primality test

Let’s assume o = .5

First trial: a = a, and prime test returns ‘prime!’
Second trial: @ = a; and prime test returns ‘prime!’
Third trial: a = a, and prime test returns ‘not prime!’

Is our number prime?

What is our false positive probability? Our false negative probability?




Probabilistic Accuracy: Fermat primality test @

Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:




Types of randomized algorithms

A Las Vegas algorithm is a randomized algorithm which will always
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a
fixed number of iterations and may give the correct answer.




Next Class: Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures ‘cheat’ tradeoffs!




