CS 225 Brad Solomon November 6, 2024 Data Structures and Algorithms All Paths Shortest Path (Plus Review)

Department of Computer Science

Exam $4(11/13 - 11/15)$

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam on PL

Topics covered can be found on website

Registration started October 31

[https://courses.engr.illinois.edu/cs225/fa2024/exams/](https://courses.engr.illinois.edu/cs225/exams/)

Learning Objectives

Introduce and discuss All-Paths Shortest Path

Review deterministic data structures in CS

An opportunity for Q&A for exam 4

Dijkstra's Algorithm (SSSP)


```
DijkstraSSSP(G, s):
      foreach (Vertex v : G.vertices()): 
       d[v] = +infp[v] = NULLd[s] = 0 PriorityQueue Q // min distance, defined by d[v]
      Q.buildHeap(G.vertices())
      Graph T // "labeled set"
      repeat n times:
        Vertex u = Q.removeMin()
        T.add(u)
        foreach (Vertex v : neighbors of u not in T):
         if cost(u, v) + d[u] < d[v]:
           d[v] = cost(u, v) + d[u] p[v] = u
 6
 7
 8
 9
11
12
13
14
15
16
17
18
19
20
21
```


Dijkstra's Algorithm (SSSP)

Whats the point of predecessor?

Dijkstra's Algorithm (SSSP)

Dijkstras Algorithm works only on non-negative weights

Optimal implementation:

Fibonacci Heap

If dense, unsorted list ties

Optimal runtime:

Sparse: $O(m + n \log n)$

Dense: O(n2)

```
DijkstraSSSP(G, s):
      foreach (Vertex v : G): 
       d[v] = +infp[v] = NULLd[s] = 0 PriorityQueue Q // min distance, defined by d[v]
      Q.buildHeap(G.vertices())
      Graph T // "labeled set"
      repeat n times:
        Vertex u = Q.removeMin()
        T.add(u)
        foreach (Vertex v : neighbors of u not in T):
          if cost(u, v) + d[u] < d[v]:
            d[v] = cost(u, v) + d[u] p[v] = m
      return T
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
```
Floyd-Warshall's Algorithm is an alternative to Dijkstra in the presence of negative-weight edges (not negative weight cycles).

```
FloydWarshall(G):
       Let d be a adj. matrix initialized to +inf 
       foreach (Vertex v : G): 
        d[v][v] = 0 foreach (Edge (u, v) : G):
        d[u][v] = cost(u, v) foreach (Vertex u : G): 
         foreach (Vertex v : G): 
           foreach (Vertex w : G):
             if (d[u, v] > d[u, w] + d[w, v])
              d[u, v] = d[u, w] + d[w, v]1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12
```
FloydWarshall(G): Let d be a adj. matrix initialized to +inf foreach (Vertex v : G): $d[v][v] = 0$ **foreach (Edge (u, v) : G):** $d[u][v] = cost(u, v)$ **1 2 3 4 5 6**

8 9 10 11 12 foreach (Vertex w : G): foreach (Vertex u : G): foreach (Vertex v : G): if (d[u, v] > d[u, w] + d[w, v]) $d[u, v] = d[u, w] + d[w, v]$

Let us consider comparisons where w = A:

8 9 10 11 12 foreach (Vertex w : G): foreach (Vertex u : G): foreach (Vertex v : G): if (d[u, v] > d[u, w] + d[w, v]) $d[u, v] = d[u, w] + d[w, v]$

Let us consider comparisons where $w = A$:

 \mathbf{A} **0 vs.** \mathbf{A} **A** \mathbf{A} **0 u=A, v=A** \overrightarrow{A} **B** \rightarrow **1 vs.** \overrightarrow{A} \rightarrow \overrightarrow{A} \rightarrow \overrightarrow{B} \rightarrow **1 u=A, v=B**

Don't waste time if u=w or y=w!

Let **w** be midpoint Let **u** be start point Let **v** be end point Is our distance shorter now?

8 9 10 11 12 foreach (Vertex w : G): foreach (Vertex u : G): foreach (Vertex v : G): if (d[u, v] > d[u, w] + d[w, v]) $d[u, v] = d[u, w] + d[w, v]$

Let **w** be midpoint Let **u** be start point Let **v** be end point Is our distance shorter now?

Let us consider $w = A$ (and $u := w$ and $v := w$):

8 9 10 11 12 foreach (Vertex w : G): foreach (Vertex u : G): foreach (Vertex v : G): if (d[u, v] > d[u, w] + d[w, v]) $d[u, v] = d[u, w] + d[w, v]$

Let **w** be midpoint Let **u** be start point Let **v** be end point Is our distance shorter now?

Let us consider $w = A$ (and $u := w$ and $v := w$):

8 9 10 11 12 foreach (Vertex w : G): foreach (Vertex u : G): foreach (Vertex v : G): if $(d[u, v] > d[u, w] + d[w, v])$ $d[u, v] = d[u, w] + d[w, v]$

Let us consider $w = B$ (and $u := w$ and $v := w$):

8 9 10 11 12 foreach (Vertex w : G): foreach (Vertex u : G): foreach (Vertex v : G): if $(d[u, v] > d[u, w] + d[w, v])$ $d[u, v] = d[u, w] + d[w, v]$

Let us consider $w = C$ (and $u := w$ and $v := w$):


```
FloydWarshall(G):
       Let d be a adj. matrix initialized to +inf 
       foreach (Vertex v : G): 
        d[v][v] = 0 foreach (Edge (u, v) : G):
         d[u][v] = cost(u, v)
       foreach (Vertex u : G): 
         foreach (Vertex v : G): 
           foreach (Vertex w : G):
              if (d[u, v] > d[u, w] + d[w, v])
               d[u, v] = d[u, w] + d[w, v]1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12
```


Running time?

```
FloydWarshall(G):
       Let d be a adj. matrix initialized to +inf 
       foreach (Vertex v : G): 
        d[v][v] = 0 foreach (Edge (u, v) : G):
        d[u][v] = cost(u, v) foreach (Vertex u : G): 
         foreach (Vertex v : G): 
           foreach (Vertex w : G):
             if d[u, v] > d[u, w] + d[w, v]:
              d[u, v] = d[u, w] + d[w, v]6
 7
 8
 9
10
11
12
13
14
15
16
```
We aren't storing path information! Can we fix this?

```
FloydWarshall(G):
       Let d be a adj. matrix initialized to +inf 
       foreach (Vertex v : G): 
        d[v][v] = 0 foreach (Edge (u, v) : G):
         d[u][v] = cost(u, v)
       foreach (Vertex w : G): 
         foreach (Vertex u : G): 
           foreach (Vertex v : G):
             if (d[u, v] > d[u, w] + d[w, v])
              d[u, v] = d[u, w] + d[w, v]6
 7
 8
 9
10
11
12
13
14
15
16
```

```
FloydWarshall(G):
 6789
 6
       Let d be a adj. matrix initialized to +inf 
 \overline{\mathbf{7}} foreach (Vertex v : G): 
 8
        d[v][v] = 09
         s[v][v] = 0 
10
       foreach (Edge (u, v) : G):
11
        d[u][v] = cost(u, v)12
         s[u][v] = v
13
14
       foreach (Vertex w : G): 
15
         foreach (Vertex u : G): 
16 
            foreach (Vertex v : G):
17 
              if (d[u, v] > d[u, w] + d[w, v])
18 
               d[u, v] = d[u, w] + d[w, v]19
                s[u, v] = s[u, w]
```


We have only scratched the surface on graphs! be extremely complex, and we typically only have access to local information \cdots \cdots \cdots \cdots

 \blacksquare Improperties of the level of its vector \blacksquare modifies edges configura**tion While and while w** Image from Drobyshevskiy et al. **Random graph**

Lets review what we've seen so far!

-
-
- - -

Lets review what we've seen so far!

Its arrays all the way down.

The not-so-secret underlying implementation for many things

Special Cases:

Stack and Queue

Taking advantage of special cases in lists / arrays

Heap

Taking advantage of special cases in lists / arrays

Array List (Pointer implementation)

Disjoint Set Implementation

Taking advantage of array lookup operations

Store an UpTree as an array, canonical items store **height / size**

Find(k): Repeatedly look up values until **negative value**

Union(k₁, k₂): Update *smaller* canonical item to point to larger Update value of remaining canonical item

Disjoint Sets – Smart Union

Minimizing number of O(1) operations

Both guarantee the height of the tree is: O(log n).

Disjoint Sets Path Compression

Minimizing number of O(1) operations

Find(6)

Alternative Not-Actually-A-Proof

Unproven Claim: A disjoint set implemented with smart union and path compression with **m** find calls and **n** items has a worst case

running time of **inverse Ackerman.** $|O(m \alpha(n))|$

This grows *very* slowly to the point of being treated a constant in CS.

Graph Implementation: Edge List **|V|= n,|E|= m**

Literally just arrays

insertVertex(K key): insertEdge(Vertex v1, Vertex v2, K key): $O(1)^{*}$

$O(m)$

removeVertex(Vertex v): incidentEdges(Vertex v): areAdjacent(Vertex v1, Vertex v2): removeEdge(Vertex v1, Vertex v2, K key):

Graph Implementation: Adjacency Matrix

|V|= n,|E|= m

Literally just a matrix of arrays

$O(1)$

areAdjacent(Vertex v1, Vertex v2): insertEdge(Vertex v1, Vertex v2, K key): removeEdge(Vertex v1, Vertex v2, K key):

 $O(n)$

incidentEdges(Vertex v):

insertVertex(K key): removeVertex(Vertex v): $O(n)$ — $O(n^2)$

Adjacency List

Technically linked lists I guess

… And thats most of exam 4

-
-
-
-
-
- -
- -

Randomized Algorithms

A **randomized algorithm** is one which uses a source of randomness somewhere in its implementation.

A faulty list

Imagine you have a list ADT implementation *except*…

Every time you called **insert**, it would fail 50% of the time.

Quick Primes with Fermat's Primality Test

If *p* is prime and *a* is not divisible by *p*, then $a^{p-1} \equiv 1 \pmod{p}$

But… *sometimes* if *n* is composite and $a^{n-1} \equiv 1 \pmod{n}$

Probabilistic Accuracy: Fermat primality test

Let's assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

What is our **false positive** probability? Our **false negative** probability?

Probabilistic Accuracy: Fermat primality test

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions: