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Learning Objectives

An opportunity for Q&A for exam 4

Review deterministic data structures in CS

Introduce and discuss All-Paths Shortest Path



Dijkstra’s Algorithm (SSSP)
DijkstraSSSP(G, s): 
  foreach (Vertex v : G.vertices()):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex u = Q.removeMin() 
    T.add(u) 
    foreach (Vertex v : neighbors of u not in T): 
      if cost(u, v) + d[u] < d[v]: 
        d[v] = cost(u, v) + d[u] 
        p[v] = u
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Dijkstra’s Algorithm (SSSP)
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Whats the point of predecessor?



Dijkstra’s Algorithm (SSSP)

DijkstraSSSP(G, s): 
  foreach (Vertex v : G):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex u = Q.removeMin() 
    T.add(u) 
    foreach (Vertex v : neighbors of u not in T): 
      if cost(u, v) + d[u] < d[v]: 
        d[v] = cost(u, v) + d[u] 
        p[v] = m 

  return T
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Dijkstras Algorithm works only on non-negative weights

Optimal implementation:

Optimal runtime:

Fibonacci Heap

If dense, unsorted list ties

Sparse: O(m + n log n)

Dense: O(n2)



Floyd-Warshall Algorithm
Floyd-Warshall’s Algorithm is an alternative to Dijkstra in the presence 
of negative-weight edges (not negative weight cycles).

FloydWarshall(G): 
  Let d be a adj. matrix initialized to +inf 
  foreach (Vertex v : G):   
    d[v][v] = 0 
  foreach (Edge (u, v) : G): 
    d[u][v] = cost(u, v) 

  foreach (Vertex u : G):   
    foreach (Vertex v : G):   
      foreach (Vertex w : G): 
        if (d[u, v] > d[u, w] + d[w, v]) 
          d[u, v] = d[u, w] + d[w, v]
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Floyd-Warshall Algorithm
FloydWarshall(G): 
  Let d be a adj. matrix initialized to +inf 
  foreach (Vertex v : G):   
    d[v][v] = 0 
  foreach (Edge (u, v) : G): 
    d[u][v] = cost(u, v)
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Floyd-Warshall Algorithm

A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 ∞ ∞ 0
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  foreach (Vertex w : G):   
    foreach (Vertex u : G):   
      foreach (Vertex v : G): 
        if (d[u, v] > d[u, w] + d[w, v]) 
          d[u, v] = d[u, w] + d[w, v]
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Let us consider comparisons where w = A: 



Floyd-Warshall Algorithm

Let us consider comparisons where w = A: A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 ∞ ∞ 0
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  foreach (Vertex w : G):   
    foreach (Vertex u : G):   
      foreach (Vertex v : G): 
        if (d[u, v] > d[u, w] + d[w, v]) 
          d[u, v] = d[u, w] + d[w, v]

Let w be midpoint

Let u be start point

Let v be end point

Is our distance shorter now?

A A 0 A AAvs. 0
u=A, v=A

A B -1 A BAvs. -1
u=A, v=B

Don’t waste time if u=w or v=w!



Floyd-Warshall Algorithm

Let us consider w = A (and u != w and v != w): 
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  foreach (Vertex w : G):   
    foreach (Vertex u : G):   
      foreach (Vertex v : G): 
        if (d[u, v] > d[u, w] + d[w, v]) 
          d[u, v] = d[u, w] + d[w, v]

Let w be midpoint

Let u be start point

Let v be end point

Is our distance shorter now?



Floyd-Warshall Algorithm

A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 1 ∞ 0
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Let us consider w = A (and u != w and v != w): 
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  foreach (Vertex w : G):   
    foreach (Vertex u : G):   
      foreach (Vertex v : G): 
        if (d[u, v] > d[u, w] + d[w, v]) 
          d[u, v] = d[u, w] + d[w, v]

Let w be midpoint

Let u be start point

Let v be end point

Is our distance shorter now?



Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 1 ∞ 0
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D CBvs.

Let us consider w = B (and u != w and v != w): 
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  foreach (Vertex w : G):   
    foreach (Vertex u : G):   
      foreach (Vertex v : G): 
        if (d[u, v] > d[u, w] + d[w, v]) 
          d[u, v] = d[u, w] + d[w, v]
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Floyd-Warshall Algorithm

A B

A D

A BCvs.

A DCvs.

B A

B D

B ACvs.

B DCvs.

D A

D B

D ACvs.

D BCvs.

Let us consider w = C (and u != w and v != w): 
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  foreach (Vertex w : G):   
    foreach (Vertex u : G):   
      foreach (Vertex v : G): 
        if (d[u, v] > d[u, w] + d[w, v]) 
          d[u, v] = d[u, w] + d[w, v]

A B C D

A 0 -1 3 2

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 1 5 0
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Floyd-Warshall Algorithm
A B C D

A 0 -1 3 1

B 5 0 4 2

C 0 -1 0 -2

D 2 1 5 0

A
C

D

B

3
-1

2

4

-2

FloydWarshall(G): 
  Let d be a adj. matrix initialized to +inf 
  foreach (Vertex v : G):   
    d[v][v] = 0 
  foreach (Edge (u, v) : G): 
    d[u][v] = cost(u, v) 

  foreach (Vertex u : G):   
    foreach (Vertex v : G):   
      foreach (Vertex w : G): 
        if (d[u, v] > d[u, w] + d[w, v]) 
          d[u, v] = d[u, w] + d[w, v]
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Floyd-Warshall Algorithm

FloydWarshall(G): 
  Let d be a adj. matrix initialized to +inf 
  foreach (Vertex v : G):   
    d[v][v] = 0 
  foreach (Edge (u, v) : G): 
    d[u][v] = cost(u, v) 

  foreach (Vertex u : G):   
    foreach (Vertex v : G):   
      foreach (Vertex w : G): 
        if d[u, v] > d[u, w] + d[w, v]: 
          d[u, v] = d[u, w] + d[w, v]
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Floyd-Warshall Algorithm

FloydWarshall(G): 
  Let d be a adj. matrix initialized to +inf 
  foreach (Vertex v : G):   
    d[v][v] = 0 
  foreach (Edge (u, v) : G): 
    d[u][v] = cost(u, v) 

  foreach (Vertex w : G):   
    foreach (Vertex u : G):   
      foreach (Vertex v : G): 
        if (d[u, v] > d[u, w] + d[w, v]) 
          d[u, v] = d[u, w] + d[w, v]
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We aren’t storing path information! Can we fix this?



Floyd-Warshall Algorithm
FloydWarshall(G): 
  Let d be a adj. matrix initialized to +inf 
  foreach (Vertex v : G):   
    d[v][v] = 0 
    s[v][v] = 0 
  foreach (Edge (u, v) : G): 
    d[u][v] = cost(u, v) 
    s[u][v] = v 

  foreach (Vertex w : G):   
    foreach (Vertex u : G):   
      foreach (Vertex v : G): 
        if (d[u, v] > d[u, w] + d[w, v]) 
          d[u, v] = d[u, w] + d[w, v] 
          s[u, v] = s[u, w]
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We have only scratched the surface on graphs!

Clear Rain

Snow

M =
.5 .3 .2
.5 .4 .1
.2 .1 .7

�. B���� G���� A���������

Figure �.�. The dependency graph of the edit distance recurrence.

Another interesting example is the configuration graph of a game, puzzle,
or mechanism like tic-tac-toe, checkers, the Rubik’s Cube, the Tower of Hanoi,
or a Turing machine. The vertices of the configuration graph are all the valid
configurations of the puzzle; there is an edge from one configuration to another
if it is possible to transform one configuration into the other with a single
simple “move”. (Obviously, the precise definition depends on what moves are
allowed.) Even for reasonably simple mechanisms, the configuration graph can
be extremely complex, and we typically only have access to local information
about the configuration graph.

Figure �.8. The con�guration graph of the �-disk Tower of Hanoi.

Configuration graphs are close relatives of the game trees we considered in
Chapter �, but with one crucial di�erence. Each state of a game appears exactly
once in its configuration graph, but can appear many times in its game tree. In
short, configuration graphs are memoized game trees!

Finite-state automata used in formal language theory can be modeled as
labeled directed graphs. Recall that a deterministic finite-state automaton is
formally defined as a �-tuple M = (⌃,Q, s, A,�), where ⌃ is a finite set called
the alphabet, Q is a finite set of states, s 2Q is the start state, A✓Q is the set of

���

Image from Jeff Erickson Algorithms First EditionRandom Graph Modeling 131:25

Fig. 12. Edge switch operation
modifies edges configura-
tion while keeps node degree
unchanged.

Fig. 13. ERGG: A graph is modified at the level of its vector
representation.

satisfied. The most widespread operation is pairwise edge switch, since it keeps node degrees un-
changed: a pair of edges i → j,k → l is rewired into i → l ,k → j (Figure 12).

An important fact, used in many approaches, is the following. Let a Markov chain start with
an initial graph G0 and a pair of edges to be switched is picked randomly at each step. Then the
chain has a stationary distribution uniform over all graphs with the same node degrees. Moreover,
it is irreducible, i.e., any configuration is reachable from any other. These properties make it easy
to uniformly generate random graphs with given DD [123]. In practice, for graph generating one
waits some time, linear to the number of edges m, while the chain converges. Empirically, 100m
steps is enough [95].

In the case of more-elaborate constraints C , a standard Monte Carlo sampling techniques are
employed to achieve a Markov chain with a wished stationary distribution corresponding to C .
For instance, Ying Xiaowei and Wu Xintao [138] use the Metropolis-Hastings algorithm to sample
graphs with a target distribution of features д(S ). Namely, at the step t , a potential edge switch
is accepted with probability PGt−1→Gt = min (1, д (S (Gt ))

д (S (Gt−1 ))
f (S (Gt−1 ))
f (S (Gt )) ), where f (S ) is the distribution

of feature S over all graphs with the same degree sequence. A particular example is the ClustRNet
algorithm [11], where, besides the DD, the only constraint is the CC and the graph connectivity.
Thus, the transition probability is simply 1, only if the CC of Gt is higher than some threshold
and Gt is connected, and 0 otherwise. Similarly, one can generate dK-random graphs, where C is
dK-distributions [89].

Unfortunately, MCMC, guided by complex constraints, suffer from two problems: not all states,
satisfying the constraints C , could be reachable from each other via allowed switches (non-
ergodicity property), and an increase of chain convergence time.

To make the state space more connected, L. Tabourier, C. Roth, and J.-Ph. Cointet [122] suggest
k-edge switches. They are defined for k edges {ai → bi }i=1..k , not necessarily distinct. Edges’ end-
points {bi } are randomly permuted, resulting in {ai → σ (bi )}i=1..k with σ being one of k! possible
permutations.

Pairwise edge switch is often used as an additional randomization step in RG generators. In
the ReCoN [121] model large graphs are generated by copying an original one (together with
labelled communities) k times and rewiring edges within new communities’ replicas and then

ACM Computing Surveys, Vol. 52, No. 6, Article 131. Publication date: December 2019.

Image from Drobyshevskiy et al. Random graph 
modeling: A survey of the concepts. 2019



Lets review what we’ve seen so far!



Lets review what we’ve seen so far!

Its arrays all the way down.



Lists
The not-so-secret underlying implementation for many things

Singly Linked List Array
Look up arbitrary location O(n) O(1)
Insert after given element O(1) O(n)
Remove after given element O(1) O(n)
Insert at arbitrary location O(n) O(n)
Remove at arbitrary location O(n) O(n)
Search for an input value O(n) O(n)

Special Cases:



Stack and Queue
Taking advantage of special cases in lists / arrays

C S 2 2 5
Ø

head tail



Heap
Taking advantage of special cases in lists / arrays

4 5 6 15 9 7 20 16 25 14 12 11

1 2 3 4 5 6 7 8 9 10 11 120 13 1514

T* Start T* Size T* Capacity

size_t Start

size_t Size

size_t Capacity

Array List (Pointer implementation)

Array List (Index implementation)

16



Disjoint Set Implementation

0  1  4 2  7 3  5  6

Store an UpTree as an array, canonical items store height / size

0 1 2 3 4 5 6 7

-2 0 -2 -2 0 3 3 2

-3 -2 -3

Find(k): Repeatedly look up values until negative value

Union(k1, k2): Update smaller canonical item to point to larger

Update value of remaining canonical item

Taking advantage of array lookup operations



Disjoint Sets – Smart Union

0 1 2 3

4

56

7

8 9

10

11

Union by height

Union by size

Idea: Keep the height of 
the tree as small as 
possible.

Idea: Minimize the 
number of nodes that 
increase in height

Both guarantee the height of the tree is: O(log n). 

0 1 2 3 4 5 6 7 8 9 10 11

6 6 6 8 -4 10 7 4 7 7 4 5

0 1 2 3 4 5 6 7 8 9 10 11

6 6 6 8 7 10 7 -12 7 7 4 5

Minimizing number of O(1) operations



Disjoint Sets Path Compression

int DisjointSets::find(int i) { 
  if ( s[i] < 0 ) { return i; } 
  else {  
    int root = find( s[i] ); 
    s[i] = root; 
    return root;  
  }  
}
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Alternative Not-Actually-A-Proof

Unproven Claim: A disjoint set implemented with smart union and 
path compression with m find calls and n items has a worst case 

running time of inverse Ackerman.  [O(m α(n))]
This grows very slowly to the point of being treated a constant in CS.



Graph Implementation: Edge List

v

u

w

a c

b
z

d

u

v

w

z

u v a

v w b

u w c

w z d

|V|= n,|E|= m

insertVertex(K key):

removeVertex(Vertex v):

incidentEdges(Vertex v):
areAdjacent(Vertex v1, Vertex v2):

insertEdge(Vertex v1, Vertex v2, K key):

removeEdge(Vertex v1, Vertex v2, K key):

O(1)*

O(m)

Literally just arrays



Graph Implementation: Adjacency Matrix

u v w z

u - a c 0

v - b 0

w - d

z -

v

u

w

a c

b
z

d

|V|= n,|E|= m

u

v

w

z
insertVertex(K key):
removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

insertEdge(Vertex v1, Vertex v2, K key):
removeEdge(Vertex v1, Vertex v2, K key):

O(1)

O(n)—O(n2)

O(n)

Literally just a matrix of arrays



Adjacency List

u

v

w

z

u v a

v w b

u w c

w z d

*a *c

*a *b

*b *c *d

*d

d=2

d=2

d=3

d=1

v

u

w

a c

b
z

d

Expressed as O(f)
Adjacency List

Space n+m

insertVertex(v) 1*

removeVertex(v) deg(v)

insertEdge(u, v) 1*

removeEdge(u, v)
min( deg(u), 

deg(v) )

incidentEdges(v) deg(v)

areAdjacent(u, v)
min( deg(u), 

deg(v) )

Technically linked lists I guess



… And thats most of exam 4



Randomized Algorithms
A randomized algorithm is one which uses a source of randomness 
somewhere in its implementation.
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Figure from Ondov et al 2016

0
1
0
0
1

H(z)

0 2 1 0 0 4 0 2 0 6
1 0 2 3 1 0 3 4 0 1
2 1 0 2 0 1 0 0 7 2

H(x)
H(y)
H(z)



A faulty list
Imagine you have a list ADT implementation except…

Every time you called insert, it would fail 50% of the time.



Quick Primes with Fermat’s Primality Test
If  is prime and  is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if  is composite and n an−1 ≡ 1 (mod n)



Probabilistic Accuracy: Fermat primality test
ap−1 ≡ 1 (mod p) ap−1 ≢ 1 (mod p)

 is primep

 is not primep



Probabilistic Accuracy: Fermat primality test
Let’s assume α = .5

First trial:  and prime test returns ‘prime!’ a = a0

Is our number prime?

Second trial:  and prime test returns ‘prime!’ a = a1

Third trial:  and prime test returns ‘not prime!’ a = a2

What is our false positive probability? Our false negative probability?



Probabilistic Accuracy: Fermat primality test
Summary: Randomized algorithms can also have fixed (or bounded) 
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:


