Data Structures and Algorithms All Paths Shortest Path (Plus Review) CS 225 November 6, 2024 Brad Solomon

Department of Computer Science

Exam 4 (11/13 — 11/15)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam on PL

Topics covered can be found on website

Registration started October 31

https://courses.engr.illinois.edu/cs225/fa2024/exams/

Learning Objectives

Introduce and discuss All-Paths Shortest Path

Review deterministic data structures in CS

An opportunity for Q&A for exam 4

Dijkstra's Algorithm (SSSP)


```
DijkstraSSSP(G, s):
     foreach (Vertex v : G.vertices()):
 6
 7
       d[v] = +inf
 8
       p[v] = NULL
 9
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
     Graph T // "labeled set"
13
14
15
     repeat n times:
16
       Vertex u = Q.removeMin()
17
       T.add(u)
18
       foreach (Vertex v : neighbors of u not in T):
19
         if cost(u, v) + d[u] < d[v]:
20
           d[v] = cost(u, v) + d[u]
21
           p[v] = u
```

Α	В	С	D	E	F	G	Н
	Α	Ε	В	G	Α	F	С
0	10	16	15	10	7	8	20

Dijkstra's Algorithm (SSSP)

Whats the point of predecessor?

Α	В	С	D	E	F	G	Н
	Α	E	В	G	Α	F	С
0	10	16	15	10	7	8	20

Dijkstra's Algorithm (SSSP)

Ċ

Dijkstras Algorithm works only on non-negative weights

Optimal implementation:

Fibonacci Heap

If dense, unsorted list ties

Optimal runtime:

Sparse: O(m + n log n)

Dense: O(n²)

```
DijkstraSSSP(G, s):
 6
     foreach (Vertex v : G):
 7
       d[v] = +inf
 8
       p[v] = NULL
     d[s] = 0
 9
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
     Graph T // "labeled set"
13
14
15
     repeat n times:
16
       Vertex u = Q.removeMin()
17
       T.add(u)
       foreach (Vertex v : neighbors of u not in T):
18
         if cost(u, v) + d[u] < d[v]:
19
20
           d[v] = cost(u, v) + d[u]
21
           p[v] = m
22
23
     return T
```

Floyd-Warshall's Algorithm is an alternative to Dijkstra in the presence of negative-weight edges (not negative weight cycles).

```
FloydWarshall(G):
 2
     Let d be a adj. matrix initialized to +inf
 3
     foreach (Vertex v : G):
       d[v][v] = 0
 4
     foreach (Edge (u, v) : G):
 5
 6
       d[u][v] = cost(u, v)
 7
     foreach (Vertex u : G):
 8
 9
       foreach (Vertex v : G):
10
          foreach (Vertex w : G):
            if (d[u, v] > d[u, w] + d[w, v])
11
12
              d[u, v] = d[u, w] + d[w, v]
```

1 FloydWarshall(G): 2 Let d be a adj. matrix initialized to +inf 3 foreach (Vertex v : G): 4 d[v][v] = 0 5 foreach (Edge (u, v) : G): 6 d[u][v] = cost(u, v)

	Α	В	С	D
Α				
В				
С				
D				

8 foreach (Vertex w : G): 9 foreach (Vertex u : G): 10 foreach (Vertex v : G): 11 if (d[u, v] > d[u, w] + d[w, v]) 12 d[u, v] = d[u, w] + d[w, v]

Let us consider comparisons where w = A:

	Α	В	С	D
Α	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	∞	0

8 foreach (Vertex w : G): 9 foreach (Vertex u : G): 10 foreach (Vertex v : G): 11 if (d[u, v] > d[u, w] + d[w, v]) 12 d[u, v] = d[u, w] + d[w, v]

Let us consider comparisons where w = A:

u=A, v=A $A \rightarrow A \quad 0 \quad vs. \quad A \rightarrow A \rightarrow A \quad 0$ u=A, v=B $A \rightarrow B \quad -1 \quad vs. \quad A \rightarrow A \rightarrow B \quad -1$

Don't waste time if u=w or v=w!

Let **w** be midpoint Let **u** be start point Let **v** be end point Is our distance shorter now?

	Α	В	С	D
Α	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	∞	0

8 foreach (Vertex w : G): 9 foreach (Vertex u : G): 10 foreach (Vertex v : G): 11 if (d[u, v] > d[u, w] + d[w, v]) 12 d[u, v] = d[u, w] + d[w, v]

Let us consider w = A (and u != w and v != w): $B \rightarrow C \quad 4 \quad vs. \quad B \rightarrow A \rightarrow C \quad +\infty$ $B \rightarrow D \quad 3 \quad vs. \quad B \rightarrow A \rightarrow D \quad +\infty$ $C \rightarrow B \quad +\infty \quad vs. \quad C \rightarrow A \rightarrow B \quad +\infty$ $C \rightarrow D \quad -2 \quad vs. \quad C \rightarrow A \rightarrow D \quad +\infty$ $D \rightarrow B \quad +\infty \quad vs. \quad D \rightarrow A \rightarrow B$ $D \rightarrow C \quad +\infty \quad vs. \quad D \rightarrow A \rightarrow C$ Let **w** be midpoint Let **u** be start point Let **v** be end point Is our distance shorter now?

	Α	В	С	D
Α	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	∞	0

8 foreach (Vertex w : G): 9 foreach (Vertex u : G): 10 foreach (Vertex v : G): 11 if (d[u, v] > d[u, w] + d[w, v]) 12 d[u, v] = d[u, w] + d[w, v]

Let us consider w = A (and u != w and v != w): vs. +∞ B VS. B +∞ 3 +∞ vs. +∞ VS. +∞ VS. VS. +∞ Let **w** be midpoint Let **u** be start point Let **v** be end point Is our distance shorter now?

	Α	В	С	D
Α	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	∞	0

8 foreach (Vertex w : G): 9 foreach (Vertex u : G): 10 foreach (Vertex v : G): 11 if (d[u, v] > d[u, w] + d[w, v]) 12 d[u, v] = d[u, w] + d[w, v]

Let us consider w = B (and u != w and v != w):

	Α	В	С	D
Α	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	∞	0

8 foreach (Vertex w : G): 9 foreach (Vertex u : G): 10 foreach (Vertex v : G): 11 if (d[u, v] > d[u, w] + d[w, v]) 12 d[u, v] = d[u, w] + d[w, v]

Let us consider w = C (and u != w and v != w):

	Α	В	С	D
A	0	-1	3	2
B	∞	0	4	3
С	∞	∞	0	-2
D	2	1	5	0


```
FloydWarshall(G):
 1
2
     Let d be a adj. matrix initialized to +inf
 3
     foreach (Vertex v : G):
 4
       d[v][v] = 0
 5
     foreach (Edge (u, v) : G):
 6
       d[u][v] = cost(u, v)
 7
 8
     foreach (Vertex u : G):
 9
       foreach (Vertex v : G):
10
         foreach (Vertex w : G):
11
            if (d[u, v] > d[u, w] + d[w, v])
12
              d[u, v] = d[u, w] + d[w, v]
```


Running time?

```
FloydWarshall(G):
 6
     Let d be a adj. matrix initialized to +inf
 7
     foreach (Vertex v : G):
       d[v][v] = 0
 8
 9
     foreach (Edge (u, v) : G):
10
       d[u][v] = cost(u, v)
11
12
     foreach (Vertex u : G):
13
       foreach (Vertex v : G):
14
         foreach (Vertex w : G):
15
            if d[u, v] > d[u, w] + d[w, v]:
16
              d[u, v] = d[u, w] + d[w, v]
```

We aren't storing path information! Can we fix this?

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
 6
 7
     foreach (Vertex v : G):
       d[v][v] = 0
 8
 9
     foreach (Edge (u, v) : G):
10
       d[u][v] = cost(u, v)
11
12
     foreach (Vertex w : G):
13
       foreach (Vertex u : G):
14
          foreach (Vertex v : G):
            if (d[u, v] > d[u, w] + d[w, v])
15
16
              d[u, v] = d[u, w] + d[w, v]
```

```
FloydWarshall(G):
 6
     Let d be a adj. matrix initialized to +inf
 7
     foreach (Vertex v : G):
 8
       d[v][v] = 0
 9
       s[v][v] = 0
10
     foreach (Edge (u, v) : G):
11
       d[u][v] = cost(u, v)
12
       s[u][v] = v
13
14
     foreach (Vertex w : G):
15
        foreach (Vertex u : G):
16
          foreach (Vertex v : G):
17
            if (d[u, v] > d[u, w] + d[w, v])
18
             d[u, v] = d[u, w] + d[w, v]
19
              s[u, v] = s[u, w]
```


	Α	В	С	D
Α	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	∞	0
	А	В	С	D
Α	Α	B	С	D
A B	Α	B	C C	D
A B C	Α	B	C C	D D D

We have only scratched the surface on graphs!

Image from Drobyshevskiy et al. Random graph modeling: A survey of the concepts. 2019

Lets review what we've seen so far!

Lets review what we've seen so far!

Its arrays all the way down.

The not-so-secret underlying implementation for many things

	Singly Linked List	Array
Look up arbitrary location	0(n)	0(1)
Insert after given element	0(1)	0(n)
Remove after given element	0(1)	0(n)
Insert at arbitrary location	0(n)	0(n)
Remove at arbitrary location	0(n)	0(n)
Search for an input value	0(n)	0(n)

Special Cases:

Stack and Queue

Taking advantage of special cases in lists / arrays

Heap

Taking advantage of special cases in lists / arrays

Array List (Pointer implementation)

Disjoint Set Implementation

Taking advantage of array lookup operations

Store an UpTree as an array, canonical items store height / size

Find(k): Repeatedly look up values until negative value

Union(k₁, k₂): Update *smaller* canonical item to point to larger Update value of remaining canonical item

Disjoint Sets - Smart Union

Minimizing number of O(1) operations

Union by height	0	1	2	3	4	5	6	7	8	9	10	11	Idea: Keep the height of
	6	6	6	8	-4	10	7	4	7	7	4	5	the tree as small as possible.
Union by size	0	1	2	3	4	5	6	7	8	9	10	11	Idea: Minimize the
	6	6	6	8	7	10	7	-12	7	7	4	5	number of nodes that increase in height

Both guarantee the height of the tree is: O(log n).

Disjoint Sets Path Compression

Minimizing number of O(1) operations

Find(6)

Alternative Not-Actually-A-Proof

Unproven Claim: A disjoint set implemented with smart union and path compression with **m** find calls and **n** items has a worst case running time of **inverse Ackerman.** $[O(m \ \alpha(n))]$

This grows very slowly to the point of being treated a constant in CS.

Graph Implementation: Edge List |V| = n, |E| = m

Literally just arrays

O(1)*

insertVertex(K key):

insertEdge(Vertex v1, Vertex v2, K key):

O(m) removeVertex(Vertex v): removeEdge(Vertex v1, Vertex v2, K key): incidentEdges(Vertex v): areAdjacent(Vertex v1, Vertex v2):

Graph Implementation: Adjacency Matrix |V| = n, |E| = m

Literally just a matrix of arrays

O(1)

insertEdge(Vertex v1, Vertex v2, K key):
removeEdge(Vertex v1, Vertex v2, K key):
areAdjacent(Vertex v1, Vertex v2):

O(n)

incidentEdges(Vertex v):

O(n)—O(n²) insertVertex(K key): removeVertex(Vertex v):

Adjacency List

Technically linked lists I guess

Expressed as O(f)	Adjacency List
Space	n+m
insertVertex(v)	1*
removeVertex(v)	deg(v)
insertEdge(u, v)	1*
removeEdge(u, v)	min(deg(u), deg(v))
incidentEdges(v)	deg(v)
areAdjacent(u, v)	min(deg(u), deg(v))

... And thats most of exam 4

Randomized Algorithms

A **randomized algorithm** is one which uses a source of randomness somewhere in its implementation.

A faulty list

Imagine you have a list ADT implementation *except*...

Every time you called **insert**, it would fail 50% of the time.

Quick Primes with Fermat's Primality Test

If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

But... **sometimes** if *n* is composite and $a^{n-1} \equiv 1 \pmod{n}$

Probabilistic Accuracy: Fermat primality test

Let's assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

What is our **false positive** probability? Our **false negative** probability?

Probabilistic Accuracy: Fermat primality test

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions: