Data Structures and Algorithms All Paths Shortest Path (Plus Review)

CS 225 Brad Solomon November 6, 2024

Department of Computer Science

Exam 4 (11/13 — 11/15)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam on PL

Topics covered can be found on website

Registration started October 31

https://courses.engr.illinois.edu/cs225/fa2024/exams/

Learning Objectives

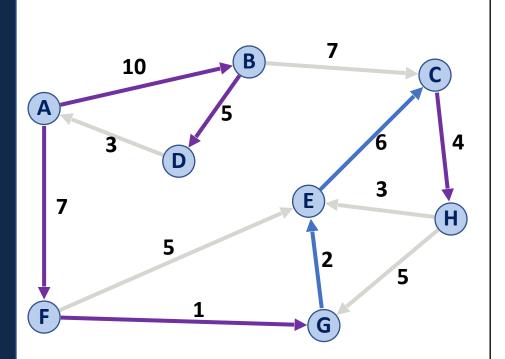
Introduce and discuss All-Paths Shortest Path

Review deterministic data structures in CS

An opportunity for Q&A for exam 4

Dijkstra's Algorithm (SSSP)

Prims equivalent

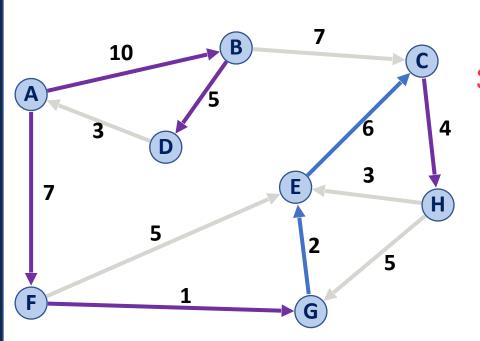


```
DijkstraSSSP(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
    p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
     Q.buildHeap(G.vertices())
12
     Graph T // "labeled set" head
13
14
15
     repeat n times:
16
       Vertex u = Q.removeMin()
17
       T.add(u)
18
       foreach (Vertex v : neighbors of u not in T):
19
         if cost(u, v) + d[u] < d[v]:
           d[v] = \frac{\cot(u, v) + d[u]}{\sqrt{v}} 
20
21
           p[v] = u
```

Α	В	С	D	E	F	G	Н
	Α	E	В	G	Α	F	C
0	10	16	15	10	7	8	20

4 One	Cha	nge f	OM	Prim
				creight
4 D'ikt	igs s	Sum of	edge	ک

Dijkstra's Algorithm (SSSP)



Whats the point of predecessor?

								_		
Α	В	С	D	E	F	G	$\left(H \right)$		- •	K 11
	Α	E	В	G	Α	F	C	E Pred	5.V15	Path
						8				

Dijkstra's Algorithm (SSSP)

Dijkstras Algorithm works only on non-negative weights

Optimal implementation:

Fibonacci Heap

If dense, unsorted list ties

Optimal runtime:

Sparse: $O(m + n \log n)$

Dense: O(n²)

```
DijkstraSSSP(G, s):
     foreach (Vertex v : G):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
     Graph T // "labeled set"
13
14
15
     repeat n times:
16
       Vertex u = Q.removeMin()
17
       T.add(u)
       foreach (Vertex v : neighbors of u not in T):
18
         if cost(u, v) + d[u] < d[v]:
19
20
           d[v] = cost(u, v) + d[u]
21
           p[v] = m
22
23
     return T
```

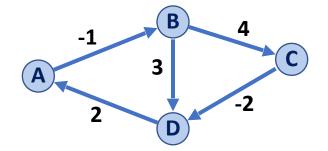
All Paths shortest path

Floyd-Warshall's Algorithm is an alternative to Dijkstra in the presence of negative-weight edges (not negative weight cycles).

```
E1V1->
   FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
     foreach (Edge (u, v) : G):
       d[u][v] = cost(u, v)
     foreach (Vertex u : G):
       foreach (Vertex v : G):
10
         foreach (Vertex w : G):
           if (d[u, v] \rightarrow d[u, w] + d[w, v])
11
12
             d[u, v] = d[u, w] + d[w, v]
                larger than Id(u,u)+d(w,u) is there a better Path
                                                       through intermediate node,
```

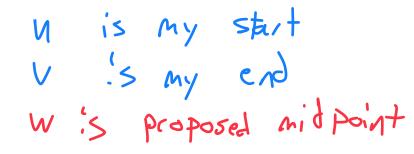
```
1 FloydWarshall(G):
2  Let d be a adj. matrix initialized to +inf
3  foreach (Vertex v : G):
4  d[v][v] = 0
5  foreach (Edge (u, v) : G):
6  d[u][v] = cost(u, v)
```

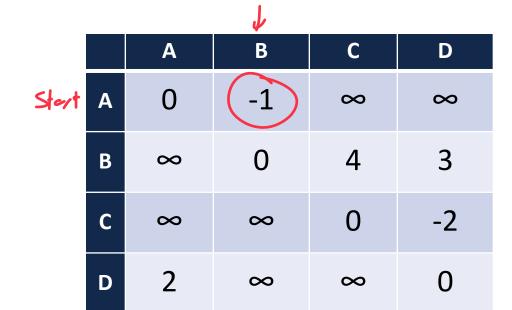
	Α	В	С	D
A	0	-	∞	100
В	90	\bigcirc	4	3
С	00	∞	0	-2
D	2	20	20	6

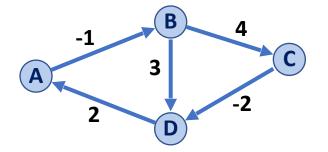


```
8  foreach (Vertex w : G):
9  foreach (Vertex u : G):
10  foreach (Vertex v : G):
11  if (d[u, v] > d[u, w] + d[w, v])
12  d[u, v] = d[u, w] + d[w, v]
```

Let us consider comparisons where w = A:







```
8    foreach (Vertex w : G):
9     foreach (Vertex u : G):
10         foreach (Vertex v : G):
11         if (d[u, v] > d[u, w] + d[w, v])
12         d[u, v] = d[u, w] + d[w, v]
```

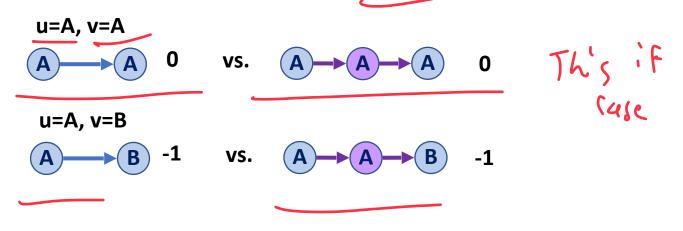
Let w be midpoint

Let **u** be start point

Let **v** be end point

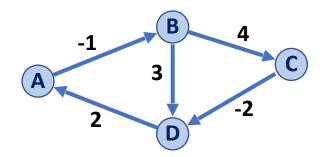
Is our distance shorter now?

Let us consider comparisons where w = A:



Don't waste time if u=w or v=w!

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	∞	0



```
8   foreach (Vertex w : G):
9   foreach (Vertex u : G):
10   foreach (Vertex v : G):
11   if (d[u, v] > d[u, w] + d[w, v])
12   d[u, v] = d[u, w] + d[w, v]
```

Let w be midpoint

Let **u** be start point

Let **v** be end point

Is our distance shorter now?

Let us consider w = A (and u != w and v != w);

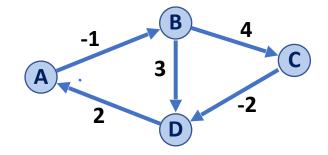
$$B \longrightarrow D$$
 3 vs. $B \longrightarrow A \longrightarrow D$ + ∞ \times

$$C \longrightarrow B +\infty$$
 vs. $C \longrightarrow A \longrightarrow B +\infty$

$$C \longrightarrow D$$
 -2 vs. $C \longrightarrow A \longrightarrow D$ + ∞

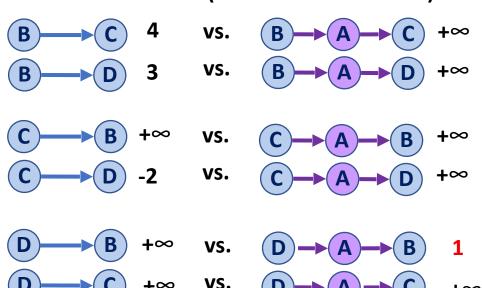
D — A) — C	90
2	+ 00	·

	Α	В	С	D
Α	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	% 1	∞	0



```
8   foreach (Vertex w : G):
9   foreach (Vertex u : G):
10   foreach (Vertex v : G):
11   if (d[u, v] > d[u, w] + d[w, v])
12   d[u, v] = d[u, w] + d[w, v]
```

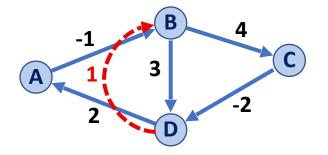
Let us consider w = A (and u != w and v != w):



Let **w** be midpoint Let **u** be start point Let **v** be end point

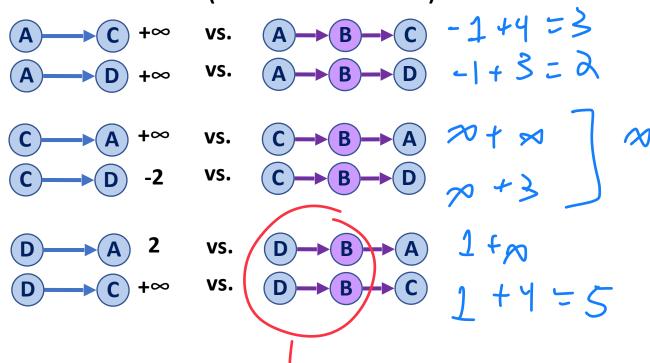
Is our distance shorter now?

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	∞	0

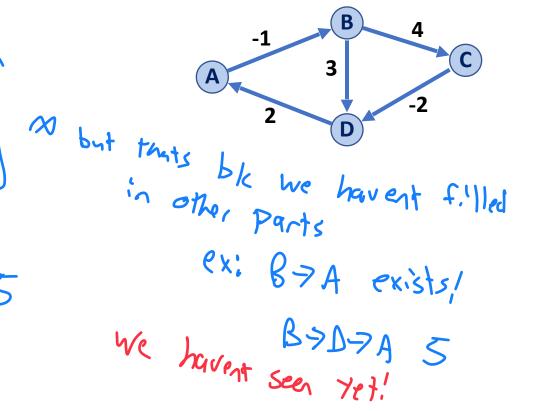


8	foreach (Vertex w : G):
9	foreach (Vertex u : G):
10	foreach (Vertex v : G):
11	if $(d[u, v] > d[u, w] + d[w, v])$
12	d[u, v] = d[u, w] + d[w, v]

Let us consider w = B (and u != w and v != w):

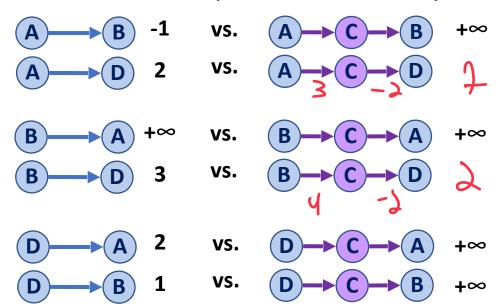


	Α	В	С	D
Α	0	-1	% 3	√ √ √ √ √ √ √ √ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	%5	0

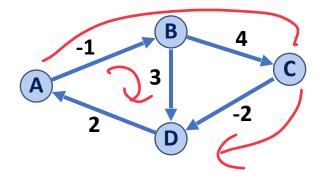


```
8    foreach (Vertex w : G):
9     foreach (Vertex u : G):
10         foreach (Vertex v : G):
11         if (d[u, v] > d[u, w] + d[w, v])
12         d[u, v] = d[u, w] + d[w, v]
```

Let us consider w = C (and u != w and v != w):

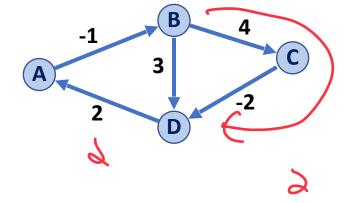


	Α	В	С	D
A	0	-1	3	×1
В	∞	0	4	>3 2
С	∞	∞	0	-2
D	2	1	5	0



```
1  FloydWarshall(G):
2    Let d be a adj. matrix initialized to +inf
3    foreach (Vertex v : G):
4    d[v][v] = 0
5    foreach (Edge (u, v) : G):
6    d[u][v] = cost(u, v)
7
8    foreach (Vertex u : G):
9    foreach (Vertex v : G):
10        foreach (Vertex w : G):
11        if (d[u, v] > d[u, w] + d[w, v])
12        d[u, v] = d[u, w] + d[w, v]
```

	Α	В	С	D
A	0	-1	3	1
В	4	0	4	2
С	0	-1	0	-2
D	2	1	5	0



```
6) Fasy to cole (Mult! threadable!)
  Hadles neg weight (but not cycle)
FlovdWar
                                   FloydWarshall(G):
                                     Let d be a adj. matrix initialized to +inf
                                     foreach (Vertex v : G):
                                       d[v][v] = 0
                                     foreach (Edge (u, v) : G):
                                10
                                       d[u][v] = cost(u, v)
                                11
                                     foreach (Vertex u : G):
                                12
                                13
                                       foreach (Vertex v : G) : 15
                                14
                                         foreach (Vertex w : G) : 1/y
                                           if d[u, v] > d[u, w] + d[w, v]:
d[u, v] = d[u, w] + d[w, v]
                                15
                                16
```

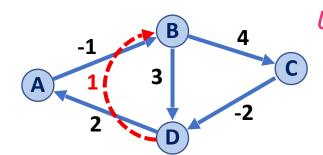
We aren't storing path information! Can we fix this?

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
     foreach (Edge (u, v) : G):
10
       d[u][v] = cost(u, v)
11
12
     foreach (Vertex w : G):
13
       foreach (Vertex u : G):
14
         foreach (Vertex v : G):
           if (d[u, v] > d[u, w] + d[w, v])
15
16
              d[u, v] = d[u, w] + d[w, v]
```

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
       foreach (Edge (u, v) : G):
10
11
       d[u][v] = cost(u, v)
       s[u][v] = v & Add direct edges ston
12
13
     foreach (Vertex w : G):
14
15
       foreach (Vertex u : G):
16
         foreach (Vertex v : G):
           if (d[u, v] > d[u, w] + d[w, v])
17
18
            d[u, v] = d[u, w] + d[w, v]
19
             s[u, v] = s[u, w]
```

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	∞	0
		487		

		Α	В	С	D	
•	Α	_	→ B		8 -	
	В			С	B C	/ へ /
	С				D	_
•	D	A	A			



extra example: GA > B > C > D (dist 1)

storing intermediate

Stips

We have only scratched the surface on graphs!

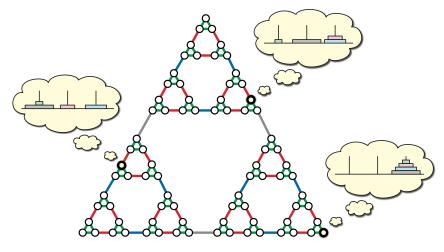


Image from Jeff Erickson Algorithms First Edition

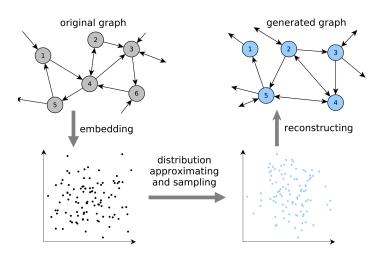
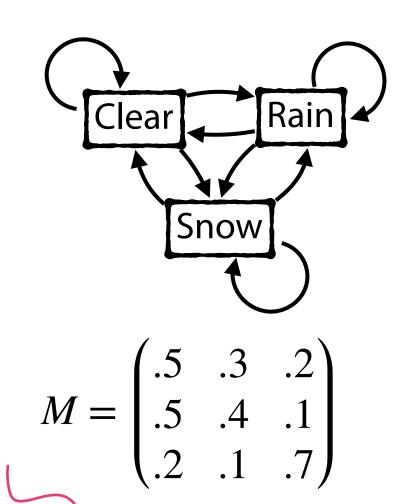


Image from Drobyshevskiy et al. Random graph modeling: A survey of the concepts. 2019



Lets review what we've seen so far!

Lets review what we've seen so far!

Its arrays all the way down.

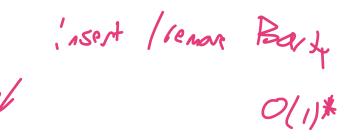
Lists

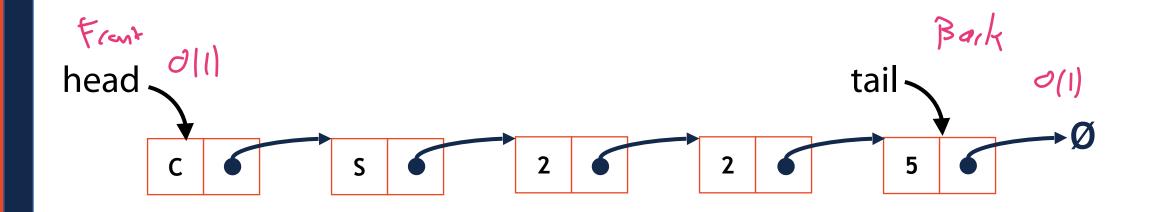
The not-so-secret underlying implementation for many things

	Singly Linked List	Array
Look up arbitrary location	0(n)	0(1)
Insert after given element	0(1)	0(n)
Remove after given element	0(1)	0(n)
Insert at arbitrary location	0(n)	0(n)
Remove at arbitrary location	0(n)	0(n)
Search for an input value	0(n)	0(n)
Special Cases:	insert Front O(1)	Insert Back O(1)#

Stack and Queue

Taking advantage of special cases in lists / arrays



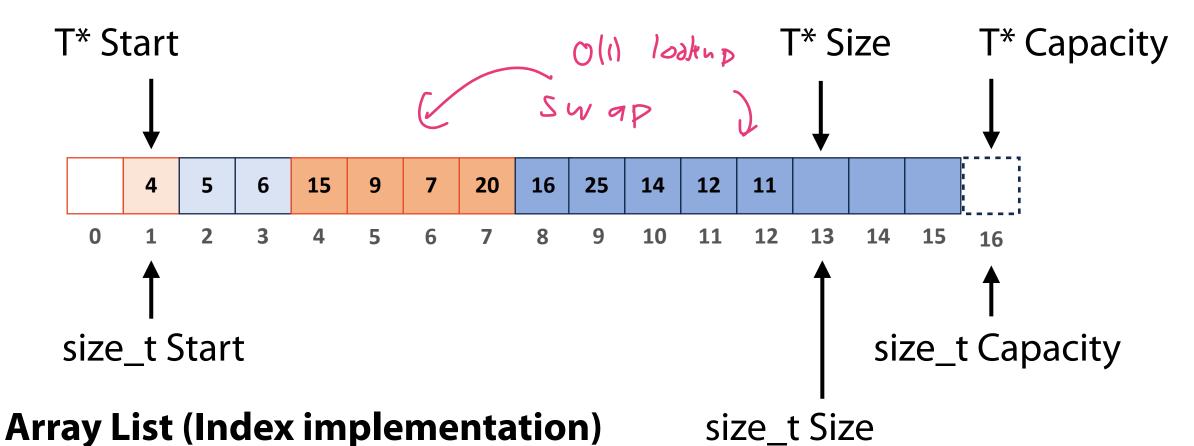


Heap

Taking advantage of special cases in lists / arrays

raking davantage of special cases in lists, arrays

Array List (Pointer implementation)

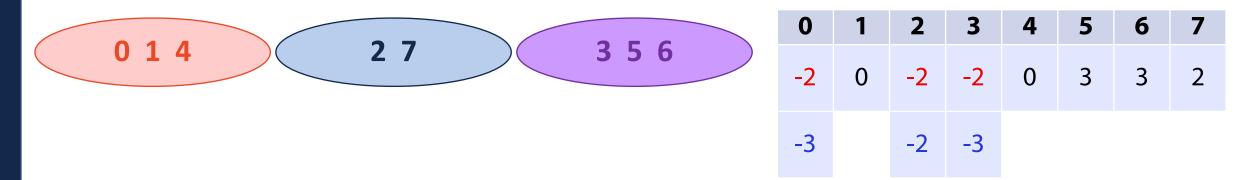


insort Back
Ol11*

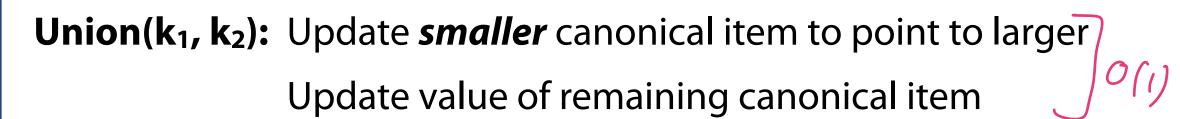
Disjoint Set Implementation

Taking advantage of array lookup operations

Store an UpTree as an array, canonical items store height / size

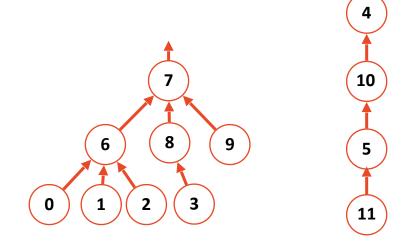


Find(k): Repeatedly look up values until negative value



Disjoint Sets - Smart Union

Minimizing number of O(1) operations



Union by height	0	1	2	3	4	5	6	7	8	9	10	11
	6	6	6	8	-4	10	7	4	7	7	4	5
Union by size	0	1	2	3	4	5	6	7	8	9	10	11
_												

Idea: Keep the height of the tree as small as possible.

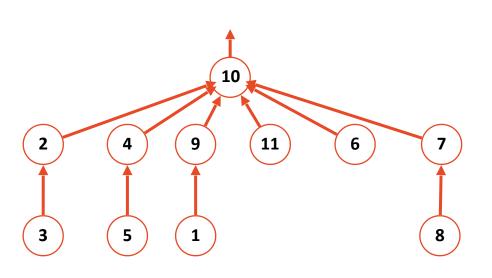
Idea: Minimize the number of nodes that increase in height

Both guarantee the height of the tree is: O(log n).

Disjoint Sets Path Compression

Minimizing number of O(1) operations

```
int DisjointSets::find(int i) {
  if (s[i] < 0) { return i; }</pre>
  else {
    int root = find( s[i] );
    s[i] = root;
    return root;
                               10
        911045
```

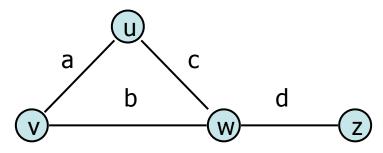


Alternative Not-Actually-A-Proof

Unproven Claim: A disjoint set implemented with smart union and path compression with **m** find calls and **n** items has a worst case running time of **inverse Ackerman.** $\left[O(m \ \alpha(n))\right]$

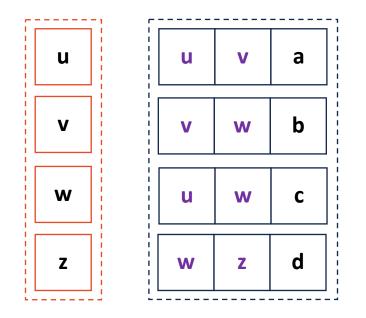
This grows very slowly to the point of being treated a constant in CS.

Graph Implementation: Edge List |V| = n, |E| = m



Literally just arrays

insertVertex(K key):
insertEdge(Vertex v1, Vertex v2, K key):

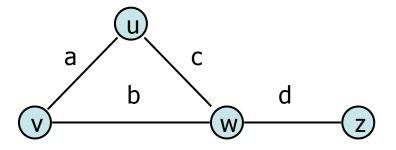


O(m)

removeVertex(Vertex v):
removeEdge(Vertex v1, Vertex v2, K key):
incidentEdges(Vertex v):
areAdjacent(Vertex v1, Vertex v2):

Graph Implementation: Adjacency Matrix

$$|V| = n, |E| = m$$

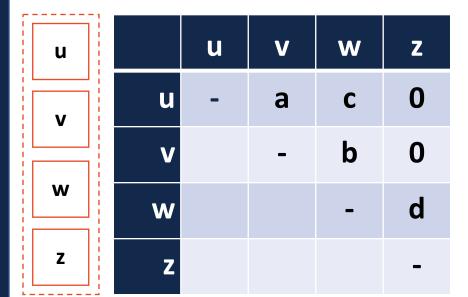


Literally just a matrix of arrays

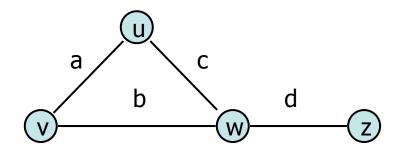
insertEdge(Vertex v1, Vertex v2, K key): removeEdge(Vertex v1, Vertex v2, K key): areAdjacent(Vertex v1, Vertex v2):

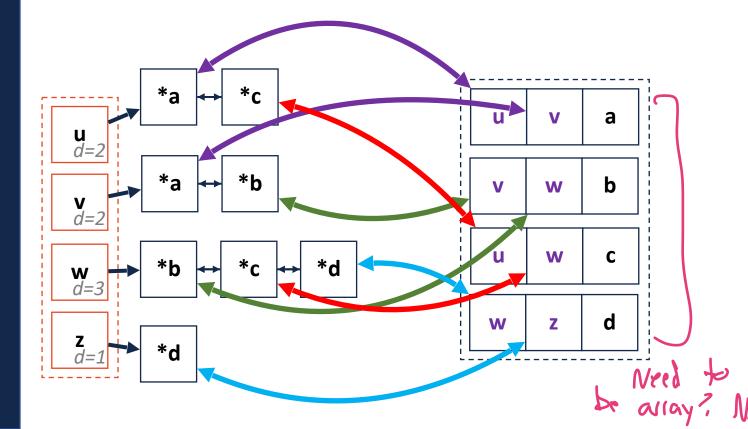
incidentEdges(Vertex v):

insertVertex(K key):
removeVertex(Vertex v):



Adjacency List





Technically linked lists I guess

Expressed as O(f)	Adjacency List
Space	n+m
insertVertex(v)	1*
removeVertex(v)	deg(v)
insertEdge(u, v)	1*
removeEdge(u, v)	min(deg(u), deg(v))
incidentEdges(v)	deg(v)
areAdjacent(u, v)	min(deg(u), deg(v))

... And thats most of exam 4

Randomized Algorithms

A **randomized algorithm** is one which uses a source of randomness somewhere in its implementation.

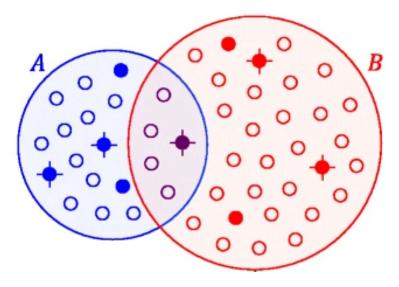
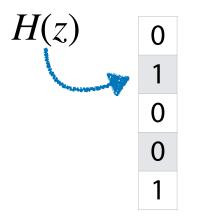
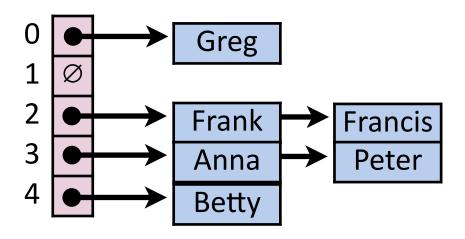


Figure from Ondov et al 2016





H(x)										
H(y)										
H(z)	2	1	0	2	0	1	0	0	7	2

A faulty list

Imagine you have a list ADT implementation except...

Every time you called **insert**, it would fail 50% of the time.

Quick Primes with Fermat's Primality Test

If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

But... **sometimes** if n is composite and $a^{n-1} \equiv 1 \pmod{n}$

Probabilistic Accuracy: Fermat primality test

	$a^{p-1} \equiv 1 \pmod{p}$	$a^{p-1} \not\equiv 1 \pmod{p}$
p is prime		
p is not prime		

Probabilistic Accuracy: Fermat primality test

Let's assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

What is our **false positive** probability? Our **false negative** probability?

Probabilistic Accuracy: Fermat primality test

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions: