Data Structures Graph Fundamentals

CS 225 Brad Solomon October 21, 2024

Learning Objectives

Define graph vocabulary

Discuss graph implementation and storage strategies

Whats next?

A non-linear data structure defined recursively as a collection of nodes where each node contains a value and zero or more connected nodes.

(In CS 225) a tree is also:

1) Acyclic — contains no cycles

2) Rooted — root node connected to all nodes

Nodes: Routers and servers

Edges: Connections

The Internet 2003

The OPTE Project (2003)

This graph can be used to quickly calculate whether a given number is divisible by 7.

- 1. Start at the circle node at the top.
- 2. For each digit **d** in the given number, follow **d** blue (solid) edges in succession. As you move from one digit to the next, follow **1** red (dashed) edge.
- 3. If you end up back at the circle node, your number is divisible by 7.

3703

"Rule of 7"

Unknown Source
Presented by Cinda Heeren, 2016

Conflict-Free Final Exam Scheduling Graph

Unknown Source Presented by Cinda Heeren, 2016

To study all of these structures:

- 1. A common vocabulary
- 2. Graph implementations
- 3. Graph traversals
- 4. Graph algorithms

$$G = (V, E)$$

A **graph** is a data structure containing a set of vertices and a set of edges

Vertex: Nodes of the graph

Edges: The connections between nodes

Defined by two endpoints

Degree: # of edges touching a vertex

A graph has **no root** and **may contain cycles**

A graph may be directed or undirected

A graph may be weighted or unweighted

Weights: A value associated with an edge

What is the shortest path from 4 to 5?

$$G = (V, E)$$

 $|V| = n$
 $|E| = m$

Subgraph(G): G' = (V', E'): $V' \in V, E' \in E, \text{ and}$ $(u, v) \in E' \rightarrow u \in V', v \in V'$

$$G = (V, E)$$

$$|V| = n$$

$$|E| = m$$

Complete Subgraph:

Every pair of vertices are adjacent

Subgraph(G): G' = (V', E'): $V' \in V$, $E' \in E$, and $(u, v) \in E' \rightarrow u \in V', v \in V'$

Connected Subgraph:

A path exists between every pair of vertices

$$G = (V, E)$$

$$|V| = n$$

$$|E| = m$$

Subgraph(G): G' = (V', E'): $V' \in V$, $E' \in E$, and $(u, v) \in E' \rightarrow u \in V', v \in V'$

Connected Subgraph:

A path exists between every pair of vertices

Connected Components:

A connected subgraph that is not part of a larger subgraph

$$G = (V, E)$$

$$|V| = n$$

$$|E| = m$$

Spanning Tree:

A connected graph with no cycles

$$G = (V, E)$$

Graph Terminology is very important!

$$|V| = n$$

$$|E| = m$$

Degree

Weight

Direction

Adjacency

Complete

Connected

Acyclic

Spanning

And more...

Running times are often reported by **n**, the number of vertices, but often depend on **m**, the number of edges.

Whats the relationship between **n** and **m**?

Minimum Edges:

Unconnected Graph:

Connected (Simple) Graph:

Maximum Edges:

Connected (Simple) Graph:

$$\sum_{v \in V} deg(v) =$$

Given a collection of individual DMs between individuals, you want to build a graph of connections in a social network.

What is a vertex?

What is an edge?

Are the edges directed or undirected?

Are the edges weighted or unweighted?

Given a collection of roads between cities in Illinois, you want to build a graph of the transportation infrastructure in the state.

What is a vertex?

What is an edge?

Are the edges directed or undirected?

Are the edges weighted or unweighted?

It is important to be able to describe the structure of a graph given input.

Some other common questions:

Does your graph have cycles?

What is the largest / smallest / average degree in your graph?

What is the total number of edges?

• • •

Of course, we also have to understand the graph as a data structure

Graph Implementation

What information do we need to store to fully define a graph?

Vertex:

Edge:

What information do we want to be able to find out quickly?

What operations do we want to prioritize?

Graph ADT

Data:

- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);

- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- getEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);

- origin(Edge e);
- destination(Edge e);

Graph Implementation Idea

The equivalent of an 'unordered' data structure

Vertex Storage:

Edge Storage:

getEdges(Vertex v)

areAdjacent(Vertex v1, Vertex v2)

insertVertex(K key)

removeVertex(Vertex v)

insertEdge(Vertex v1, Vertex v2, K key)

removeEdge(Vertex v1, Vertex v2)

Graph Implementation: Edge List

Pros:

Cons:

Graph Implementation: Brainstorming better

What operations might I want to do very quickly?

What modifications might allow me to do these things faster?

Graph Implementation: Adjacency Matrix

	u	V	W	Z
u				
V				
W				
Z				