
Department of Computer Science

Data Structures
Graph Fundamentals

October 21, 2024 CS 225
Brad Solomon

Learning Objectives

Discuss graph implementation and storage strategies

Define graph vocabulary

Whats next?
A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

(In CS 225) a tree is also:

1) Acyclic — contains no cycles

2) Rooted — root node connected to all nodes

1

2

3

4
5

6

The Internet 2003
The OPTE Project (2003)

Nodes: Routers and
servers

Edges: Connections

https://www.opte.org/the-internet

“Rule of 7”
Unknown Source
Presented by Cinda Heeren, 2016

This graph can be used to quickly calculate
whether a given number is divisible by 7.

1. Start at the circle node at the top.
2. For each digit d in the given number, follow
d blue (solid) edges in succession. As you
move from one digit to the next, follow 1 red
(dashed) edge.
3. If you end up back at the circle node, your
number is divisible by 7.

3703

Conflict-Free Final Exam Scheduling Graph
Unknown Source
Presented by Cinda Heeren, 2016

“Rush Hour” Solution
Unknown Source
Presented by Cinda Heeren, 2016

“Stanford Bunny”
Greg Turk and Mark Levoy (1994)

Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms

Graph Vocabulary

5

3
6

7

2

1

4

G = (V, E)

Vertex:

Edges:

A graph is a data structure containing a set of vertices and a set of edges

Nodes of the graph

Defined by two endpoints

The connections between nodes

Graph Vocabulary
Degree: # of edges touching a vertex

Adjacency: Two vertices are adjacent if they
are connected by an edge

5

3
6

7

2

1

4

Path: A sequence of vertices (or edges)
between two nodes

Graph Vocabulary

Cycle:

A graph has no root and may contain cycles

A path from a node to itself

Terminology Trivia: Every tree is a graph but not every graph is a tree

5

3
6

7

2

1

4

Simple Graph: No self-loops or multi-edges

Graph Vocabulary

Directed:

A graph may be directed or undirected

Edges are one way connections

v2 is reachable from v1 if there is a
path from v1 to v2

Undirected: Traversable in either direction

Reachability:

What nodes are not reachable from 4?

5

3
6

7

2

1

4

Graph Vocabulary

5

3
6

7

2

1

4

Weights:

A graph may be weighted or unweighted

A value associated with an edge

What is the shortest path from 4 to 5?

1

5

32

1 1

1
9

Graph Vocabulary

G1

G2
G3

Subgraph(G):
G’ = (V’, E’):
 V’ ∈ V, E’ ∈ E, and
 (u, v) ∈ E’  u ∈ V’, v ∈ V’

(2, 5)

G = (V, E)

|V| = n

|E| = m

Graph Vocabulary

G1

G2
G3

Subgraph(G):
G’ = (V’, E’):
 V’ ∈ V, E’ ∈ E, and
 (u, v) ∈ E’  u ∈ V’, v ∈ V’

(2, 5)
Complete Subgraph:

Every pair of vertices are adjacent

G = (V, E)

|V| = n

|E| = m

Graph Vocabulary

G1

G2
G3

Subgraph(G):
G’ = (V’, E’):
 V’ ∈ V, E’ ∈ E, and
 (u, v) ∈ E’  u ∈ V’, v ∈ V’

(2, 5)
Connected Subgraph:
A path exists between every pair
of vertices

G = (V, E)

|V| = n

|E| = m

Graph Vocabulary

G1

G2
G3

Subgraph(G):
G’ = (V’, E’):
 V’ ∈ V, E’ ∈ E, and
 (u, v) ∈ E’  u ∈ V’, v ∈ V’

(2, 5)
Connected Subgraph:
A path exists between every pair
of vertices

Connected Components:
A connected subgraph that is not
part of a larger subgraph

G = (V, E)

|V| = n

|E| = m

Graph Vocabulary

G1

G2
G3

Subgraph(G):
G’ = (V’, E’):
 V’ ∈ V, E’ ∈ E, and
 (u, v) ∈ E’  u ∈ V’, v ∈ V’

(2, 5)
Spanning Tree:
A connected graph with no cycles

G = (V, E)

|V| = n

|E| = m

Graph Vocabulary

G1

G2
G3

(2, 5)

Graph Terminology is very important!G = (V, E)

|V| = n

|E| = m
Degree
Weight

Adjacency
Direction

Complete
Connected

Spanning
Acyclic

And more…

∑
v∈V

deg(v) =

Minimum Edges:

Running times are often reported by n, the number of vertices, but
often depend on m, the number of edges.

Unconnected Graph:

Connected (Simple) Graph:

Maximum Edges:

Connected (Simple) Graph:

Whats the relationship between n and m?

Graphs
Given a collection of individual DMs between individuals, you want to
build a graph of connections in a social network.

What is a vertex?

What is an edge?

Are the edges directed or undirected?

Are the edges weighted or unweighted?

Graphs
Given a collection of roads between cities in Illinois, you want to build a
graph of the transportation infrastructure in the state.

What is a vertex?

What is an edge?

Are the edges directed or undirected?

Are the edges weighted or unweighted?

Graphs
It is important to be able to describe the structure of a graph given input.

Some other common questions:

Does your graph have cycles?

What is the largest / smallest / average degree in your graph?

What is the total number of edges?

…

Of course, we also have to understand the graph as a data structure

Graph Implementation
What information do we need to store to fully define a graph?

Vertex:

Edge: v

u

w z

What information do we want to be able to find out quickly?

What operations do we want to prioritize?

Graph ADT Functions:

- insertVertex(K key);

- insertEdge(Vertex v1, Vertex v2, K key);

- removeVertex(Vertex v);

- removeEdge(Vertex v1, Vertex v2);

- getEdges(Vertex v);

- areAdjacent(Vertex v1, Vertex v2);

- origin(Edge e);

- destination(Edge e);

Data:

- Vertices

- Edges

- Some data structure
maintaining the
structure between
vertices and edges.

X

V

W

Z

Y

b

e

d

f
g

h

Graph Implementation Idea

v

u

w

a c

b
z

d

v

u

w z

Vertex Storage:

Edge Storage:

|V|= n,|E|= mGraph Implementation: Edge List
The equivalent of an ‘unordered’ data structure

u

v

w

z

u v a

v w b

u w c

w z d

a c

b d

Graph Implementation: Edge List

v

u

w

a c

b
z

d

u

v

w

z

u v a

v w b

u w c

w z d

getEdges(Vertex v)

areAdjacent(Vertex v1, Vertex v2)

|V|= n,|E|= m

Graph Implementation: Edge List

v

u

w

a c

b
z

d

u

v

w

z

u v a

v w b

u w c

w z d

insertVertex(K key)

removeVertex(Vertex v)

|V|= n,|E|= m

Graph Implementation: Edge List

v

u

w

a c

b
z

d

u

v

w

z

u v a

v w b

u w c

w z d

insertEdge(Vertex v1, Vertex v2, K key)

removeEdge(Vertex v1, Vertex v2)

|V|= n,|E|= m

Graph Implementation: Edge List
Pros:

Cons:

Graph Implementation: Brainstorming better
What operations might I want to do very quickly?

What modifications might allow me to do these things faster?

Graph Implementation: Adjacency Matrix

u v w z

u

v

w

z

v

u

w

a c

b
z

d

u

v

w

z

u v a

v w b

u w c

w z d

