Data Structures

Graph Fundamentals
CS 225 October 21, 2024

Brad Solomon O
2~()

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Define graph vocabulary

Discuss @ple@nd storage strategies

Whats next?

A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

3/77’}\
(In CS 225) a te=e is also:

1) Acyclic — contains no cyclesx
_

Nodes: Routers and
servers

Edges: Connections

fj D‘v al

The Internet 2003
OPTE Project (2003)

https://www.opte.org/the-internet

This graph can be used to quickly calculate
whether a given number is divisible by 7.

1. Start at the circle node at the top.

2. For each digit d in the given number, follow
d blue (solid) edges in succession. As you
move from one digit to the next, follow 1 red
(dashed) edge.

3. If you end up back at the circle node, your
number is divisible by 7.

3703 ——:lfufs\&r
\>\/ 7/

)

“Rule of 7”

Unknown Source
Presented by Cinda Heeren, 2016

- Cour s¢ as /loé‘f
| _m .. =

KAl Yo dve 5 Shde) Studat
N N P70

QU) WP

L’70O§>S 9. to ny
CAun +fmf;{

Conflict-Free Final Exam Scheduling Graph

Unknown Source

Presented by Cinda Heeren, 2016

ver\iee 5%*6 of o Syslem

“Rush Hour” Solution

Unknown Source
Presented by Cinda Heeren, 2016

Jeaphcs]

“Stanford Bunny”
Greg Turk and Mark Levoy (1994)

s
avavava¥iz
arararaVizs
aravar

=
X

:
o

)
i

AN
= Y

R R
SR st

To study all of these structﬂes;

A= L %j,[‘/
1. A common vocabulary & \’“‘)7 g v
2. Graph implementations & Vel oo

3. Graph traversals & Aext veek
4. Graph algorithms)

AT

5
s

B

Oiomedes

Quom Gertrsto

SR A
Tojars

Harmiot

HAMLET TROILUS AND CRESSIDA

Morgan Stanley %
an
°
oTresne
© Brad
Illinois)
° o
s linois(ish) g @@ © g St:Louis .
® emidiand o® pewe st
Leal; . °
Bryfle . '
® @ PGCSAB % e
.
"

1llinois

° ~ o,
oo ® oDy i % ') .
o ° ® ~ °
UT-Dalla UT-Dallas ° ‘e
Wedding .
LIS eee
oo

o0®

Graph Vocabulary G = (V, E)

A graph is a data structure containing a set of vertices and a set of edges

mertex: Nodes of the graph

L) Dq{'" b A}o\’l»,\aj{

S]’(L’y' Value

O Shete <f Sytim
Edges: The connections between nodes

Defined by two endpoints
S Difect .
S Wit . g

Graph Vocabulary

Degree: # of edges touching a vertex
Dleyy (:l’7 T, ~degree 2 H edges 1,

(% Ot '-’&fj/f{ : _E eéyes QJM',-

Adjacency: Two vertices are adjacent if they
are connected by an edge

| -3
\ -2
Path: A sequence of vertices (or edges)
between two nodes

| 2296

Graph Vocabulary

A graph has no root and may contain cycles \ - \ias’f >
n [

“4(3;5 - A A - e ?es

oy & Cycle: A path from a node to itself

4/_§
Onge?

o) 7 >3 Vrhes
(1,3) 26,)502)56,1) edrs

\Sl/mple Grapj No self-loops or mult| -edges
§ N

Terminology Trivia: Every tree is a graph but not every graph is a tree

Graph Vocabulary
| 2

> 71
Directed: Edges are one way connections

A graph may be directed or undirected

Undirected: Traversable in either direction
(& X

Reachability: v, isreachable from v; if there is a
— path from vito v

What nodes are not reachable from 4? 3 Z
I

v B Ueyht
Graph Vocabulary Wg < 29

A graph may be weighted or unweighted

Weights: A value associated with an edge

What is the shortest path from 4 to 5? \S\
~— 2

Pum OF Lyeigld

\A’\We,:a\/\\f) $1‘\gr3\'0\§* Péf\'\n?: \l'-l{ @}995
L’7*'5‘4'/\/ Cdst wellt)

et

Graph Vocabulary Zgzirc’p:’(ﬁi):

G=(V,E) V' eV, E' €E, and
V[=n (u,v)eE> 2ueV,veV

Graph Vocabulary Subgraph(G):

G'=(V, E'):
G=(V,E) V' eV, E' €E, and
V|=n (uv)eE" 2ueV,veV
Complete Subgraph:

Every pair of vertices are adjacent

=

Graph Vocabulary Subgraph(G):

G’ =(V, F):
G=(V,E) V' eV, E' €E, and
V[=n (u,v)eE"2ueV,veV
Connected Subgraph:

A path exists between every pair
of vertices

Graph Vocabulary Subgraph(G):

G’ =(V, F):
G=(V,E) V' eV, E' €E, and
V[=n (u,v)eE"2ueV,veV
Connected Subgraph:
(2, 5) Jrap

A path exists between every pair
of vertices

@ @ 7Y Connected Components:
2 7 » A connected subgraph that is not
63 part of a larger subgraph
(/7 TAe)0"9!9 (Omz vl 5‘,,\)‘7/@\\

Subgraph(G):

Graph Vocabulary | & = (V' ')
G=(V,E) 3/@\ V' eV, E' €E, and
Vl=n & @wz (u,v)eE" 2 ueV,veV
gt 3
E[=m .
(2, 5) Spanning Tree:
- A connected graph with no cycles

.

S

(
/V\:/\;/huw\ §’?aw\,\,,§ e\-/p{

@ @ Y e —
O Y P \
0 T @ K) , PKs lowegk ey |-
- | e& .
G AT .
g éPﬁW\"’IS ‘)'/rL

: Yree_

Graph Vocabulary @

") collecdian (o set)
G=(V,E) T&oe verryes Graph Terminology is very important!

Vi=n f& 5 Degree
E Weight
Direction

Adjacency
Complete
Connected
Acyclic
Spanning
And more...

Running times are often reported by n, the number of vertices, but
often depend on m, the number of edges.

Whats the relationship between n and m?

Minimum Edges: @ O,
Unconnected Graph: O

.
£
Connected (Simple) Graph: /| - | OBV, _72:257
=/

Maximum Edges:

Connected (Simple)Graph:(Nv\) + (/\/w)>'k QV—;)+ g}:(j é

deg(v) = 1), > L
\Ef > O’”> ~

Graphs g > B ne 8

Given a collection of individual DMs between individuals, you want to
build a graph of connections in a social network.

: ?
What is a vertex: Tagr aaw

What is an edge?
A’ Nes Sage

Are the edges directed or undirected?

— G /5!
L’? Dite ko 7 Depe
Are the edges weighted or unweighted?
5 Depeads,

/

Graphs

Given a collection of roads between cities in lllinois, you want to build a
graph of the transportation infrastructure in the state.

What is a vertex?
What is an edge?
Are the edges directed or undirected?

Are the edges weighted or unweighted?

Graphs

It is important to be able to describe the structure of a graph given input.

Some other common questions:

Does your graph have cycles?

What is the largest / smallest / average degree in your graph?

What is the total number of edges?

Of course, we also have to understand the graph as a data structure

Graph Implementation

What information do we need to store to fully define a graph?
/ ®\
W (w

What information do we want to be able to find out quickly?

Vertex:

©

Edge:

What operations do we want to prioritize?

Graph ADT Functions: @

Data: - insertVertex(K key);
- Vertices - insertEdge(Vertex v1, Vertex v2, K key);
-Edges;:}
- Some data structure - removeVertex(Vertex v);
maintaining the - removeEdge(Vertex v1, Vertex v2);
structure between
vertices and edges. - getEdges(Vertex v);

- areAdjacent(Vertex v1, Vertex v2);

- origin(Edge e);
- destination(Edge e);

Graph Implementation Idea

®
G/b\@ "

= A list]

Graph Implementation: Edge List 1VI= n, |[E|= m

The equivalent of an ‘unordered’ data structure

(W Vertex Storage:

/ & G O?'\f(Mql\\/ G (3 l:ﬁ‘\' f Veriex ,a;'k
b N d

L‘7 Bl A ‘F@m € dse S 1658

—————————

Edge Storage:
DA I of Ahee walud

9 Viery Comdack cepcesefaria,

Graph Implementation: Edge List |1V|= n, |E|=m

A
@ —@
............ Jooy

o @]

| [@O[]<]

L Tw] 2\ l/

m)
getEdges(Vertex v) O (

k‘? T(av 0 /%€ f’&gc Sto 1ag @
I/CX)A o, U !n S—)zf/ t o e /\J

\/

areAdjacent(Vertex v1, Vertex v2) () (M >
L’? D 9, gC{wx(*}h.‘n 7‘\

Graph Implementation: Edge List |1V|= n, |E|=m

© insertVertex(K key) O (|)*
@/b&@%d - 5 A//a\/ \Ase ok
R
) el W \ removeVertex(Vertex v) U<)
\V ' ié/b 9 Array (emaval
| BT |\

Graph Implementation: Edge List |1V|= n, |E|=m

© insertEdge(Vertex v1, Vertex v2, K key)

7'0& d k& A/m\/ :J— O({)\%

—————————

removeEdge(Vertex v1, Vertex v2)

v \",—W b L7 G(W’)

Graph Implementation: Edge List @

Pros:

Cons:

Graph Implementation: Brainstorming better

What operations might | want to do very quickly?

What modifications might allow me to do these things faster?

Graph Implementation: Adjacency Matrix

a &
b d
O, o, @
u] Y/ a
Y/ Y/ w b
w u w C
z w z d
