
Department of Computer Science

Data Structures
Disjoint Sets 2

October 18, 2024 CS 225
Brad Solomon

Learning Objectives

Discuss how improvements affect efficiency

Continue to improve implementation of disjoint sets

Disjoint Sets

Find(T key)

Union(T k1, T k2)

makeSet(vector<T> items)

ADT:

Key Ideas:

Every item exists in exactly one set

Every item in each set has same representation

Every set has a different representation

2 5 9

7

0 1 4 8 3 6

Disjoint Sets – Best and Worst UpTree

4

3
2

4

3 1

2

1

1 2 3 40

3 4 2 -1

1 2 3 40

4 4 4 -1

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

Union by height

Union by size

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

Both guarantee the height of the tree is: _____________.

0 1 2 3 4 5 6 7 8 9 10 11

6 6 6 8 -4 10 7 4 7 7 4 5

0 1 2 3 4 5 6 7 8 9 10 11

6 6 6 8 7 10 7 -12 7 7 4 5

Disjoint Set Implementation

0 1 4 2 7 3 5 6

Store an UpTree as an array, canonical items store height / size

0 1 2 3 4 5 6 7

0 0 3 3 2

Find(k): Repeatedly look up values until negative value

Union(k1, k2): Update smaller canonical item to point to larger

Update value of remaining canonical item

Disjoint Sets Find
int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find(s[i]); }
}

1
2
3
4

0 1 4 8

0

1

4

8

1 2 3 4 5 6 70

84

8 9

4

Find(1)

Does implementation work on height / size?

-3/-4

Disjoint Sets Union

0

1

4

8

1 2 3 4 5 6 70

8 -2 -4 34

8 9

4

unionBySize(4, 3)

void DisjointSets::unionBySize(int root1, int root2) {
 int newSize = arr_[root1] + arr_[root2];

 if (arr_[root1] < arr_[root2]) {

 arr_[root2] = root1;

 arr_[root1] = newSize;

 } else {

 arr_[root1] = root2;

 arr_[root2] = newSize;

 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

3

6

Disjoint Sets Union by Size
Claim: Sets unioned by size have a height of at most O(log2 n)

Claim: An UpTree of height h has nodes ____________≥

Base Case:

Disjoint Sets Union by Size
Claim: Sets unioned by size have a height of at most O(log2 n)

Claim: An UpTree of height h has nodes ≥

Base Case: h = 0

2h

X

Base case height is 0, has one node.

20 = 1

vs.

Base case holds!

Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

IH:

Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

(We have done total unions and plan to do one more)i − 1

? ?

Case 1: h(A) < h(B)

Case 2: h(A) == h(B)

Case 3: h(A) > h(B)
size(B) size(A)≥

…

…

A

B

IH: Claim is true for unions, prove for th union.< i i

Without loss of generality, let B be the larger set BY SIZE

We must explore how height changes for each case:

Disjoint Sets Union by Size

Case 1: height(A) < height(B)

size(B) size(A)≥

Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union.< i i

Disjoint Sets Union by Size

Case 1: height(A) < height(B)

size(B) size(A)≥

Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union.< i i

Ideal case where size and height in agreement!

Height doesn’t change .(h(B′￼) = h(B))
By IH: size(A) ≥ 2h(A) size(B) ≥ 2h(B)

 size(B′￼) = size(A) + size(B) = 2h(A) + 2h(B) ≥ 2h(B) = 2h(B′￼)

Disjoint Sets Union by Size size(B) size(A)≥

Case 2: height(A) == height(B)

Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union.< i i

Disjoint Sets Union by Size size(B) size(A)≥

Case 2: height(A) == height(B)

Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union.< i i

If we merge two equal height trees, height always increase by 1

By IH: size(A) ≥ 2h(A) size(B) ≥ 2h(B)

size(B′￼) = size(A) + size(B) = 2h(A) + 2h(B)

= 2h(B) + 2h(B)

= 2 * 2h(B) = 2h(B)+1 ≥ 2h(B′￼)

Disjoint Sets Union by Size

Case 3: height(A) > height(B)

Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union.< i i

size(B) size(A)≥

Disjoint Sets Union by Size

Case 3: height(A) > height(B)

Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union.< i i

Merging taller tree into smaller — height increase to height(A)+1!

By IH: size(A) ≥ 2h(A) size(B) ≥ 2h(B)

 size(B′￼) = size(A) + size(B) ≥ 2 size(A)

= 2 * 2h(A) = 2h(A)+1 ≥ 2h(B′￼)

size(B) size(A)≥

Disjoint Sets Union by Size
Proven: An UpTree of height h has nodes ≥ 2h

Each case we saw we have . n ≥ 2h

size(B) size(A)≥

IH: Claim is true for unions, prove for th union.< i i

Disjoint Sets Find Find(6)

1

2

3

6

7

8

9

4

5

10

11
As we walk up a tree, why cant we fix it?

int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find(s[i]); }
}

1
2
3
4

Disjoint Sets Find

int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else {
 int root = find(s[i]);
 s[i] = root;
 return root;
 }
}

1
2
3
4
5
6
7
8

Find(6)

1

2

3

6

7

8

9

4

5

10

11
As we walk up a tree, why cant we fix it?

int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find(s[i]); }
}

1
2
3
4

This is path compression:

Path Compression

1

2

3

6 7

8

94

5

10

11

Find(6)

1

2

3

6

7

8

9

4

5

10

11

This seems good — but how good in theory?

Path Compression Analysis
Two major problems here:

1) Our efficiency changes over repeated calls to find()

2) Our height changes so we cant use union by height

Amortized Time Review
We have n items. We make n insert() calls.

We are interested in the worst case work possible over n calls.

Amortized Time (Path Compression)
We have n items in an Uptree. We make m find() calls.

We are interested in the worst case work possible over m calls.

1

2

3

6

7

8

9

4

5

10

11

Union by Rank (Not Height)
Once I do path compression, I change the height of tree!

So we need a new way of approximating height.

Rank is a way of remembering what our height was before P.C.

Union by Rank (Not Height)
New UpTrees have rank = 0

Let A, B be two sets being unioned. If:

rank(A) == rank(B): The merged UpTree has rank + 1

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)

Key Properties of UpTree by rank w/ PC
The parent of a node is always higher rank than the node.

For any integer , there are at most nodes of rank .r
n
2r

r

There are at least nodes in a root of rank .≥ 2r r

Key Properties of UpTree by rank w/ PC
The parent of a node is always higher rank than the node.

For any integer , there are at most nodes of rank .r
n
2r

r

There are at least nodes in a root of rank .≥ 2r r

This comes from how we set up rank union

(Take larger of two rank or add one if tied)

Proof by Induction: To create rank set, we merge two setsr r − 1
By IH (not shown), those sets have nodes2r−1 + 2r−1 = 2r

A rewrite of the above logic given n nodes

Amortized Time (Rank w/ Path Compression)
Put every non-root node in a bucket by rank!

Structure buckets to store ranks [r, 2r − 1]

Ranks Bucket

0 0
1 1

2 - 3 2

4 - 15 3

16 – 65535 4

65536 – 2^{65536}-1 5Where did number range come from?

Iterated Logarithm Function ()𝑙𝑜𝑔∗𝑛
The number of times you can take a log of a number

log * (n) =
0

1 + log * (log(n)) , n > 1

, n ≤ 1{
log * (265536) = 5

20 = 1
21 = 2
22 = 4
24 = 16
216 = 65536
265536

The work of find(x) are the steps taken on the path from a node x to the
root (or immediate child of the root) of the UpTree containing x

Amortized Time (Rank w/ Path Compression)

We can split this into two cases:

Case 1: We take a step from one bucket to another bucket.

Case 2: We take a step from one item to another inside the same bucket.

The work of find(x) are the steps taken on the path from a node x to the
root (or immediate child of the root) of the UpTree containing x

Amortized Time (Rank w/ Path Compression)

We can split this into two cases:

Case 1: We take a step from one bucket to another bucket.

Case 2: We take a step from one item to another inside the same bucket.

We have at most buckets so for m finds, this is log * (n) O(m log * n)

Let’s call this the step from u to v.

u

v
vu

Every time we do this, we do path compression:
We set parent(u) a little closer to root

Amortized Time (Rank w/ Path Compression)
Case 2: We take a step from one item to another inside the same bucket.
Let’s call this the step from u to v.

u

v
vu

Every time we do this, we do path compression:
We set parent(u) a little closer to root

How many total times can I do this for each u in a bucket?

How many nodes are in bucket r?

By definition of our bucket ranges ~2r

By definition of how we set up rank:
n
2r

Case 2 work is n log * (n)Given we have log*(n) buckets:

Final Result

We have n items in an Uptree. We make m find() calls. Total work is:

Amortized (n + m) log * (n)
In terms of real world data, this is practically a constant.

Alternative Not-Actually-A-Proof

Unproven Claim: A disjoint set implemented with smart union and
path compression with m find calls and n items has a worst case

running time of inverse Ackerman. [O(m α(n))]
This grows very slowly to the point of being treated a constant in CS.

