Data Structures Disjoint Sets 2

CS 225 Brad Solomon October 18, 2024

Department of Computer Science

Learning Objectives

Continue to improve implementation of disjoint sets

Discuss how improvements affect efficiency

Disjoint Sets ADT: makeSet(vector<T> items) Find(T key) Union(T k1, T k2) **Key Ideas:** Every item exists in exactly one set Every item in each set has same representation Every set has a different representation

Disjoint Sets – Best and Worst UpTree

Disjoint Set Implementation Store an UpTree as an array, canonical items store height / size 7 6 014 27 2 h=1 h=1 Find(k): Repeatedly look up values until negative value 6 Height: - 2 (hright + 1) - Value -1 45.20° -] · size (1) - Value -1 **Union**(**k**₁, **k**₂): Update *smaller* canonical item to point to larger Update value of remaining canonical item

Disjoint Sets Union by Size

0	1	2	3
-1	-1	-1	-1

Disjoint Sets Union by Height

Disjoint Sets Union by Height

V		~	5
-1	-1	-1	-1

Idea: Keep the height of the tree as small as possible.

Idea: Minimize the number of nodes that increase in height

Disjoint Sets Union

Disjoint Sets Union by Size Claim: Sets unioned by size have a height of at most O(log₂ n) h **Claim:** An UpTree of height **h** has nodes $\geq -$ () proof by induction Base Case: n = 1h = 0 $n \geq 2$ $n \geq 2$

Disjoint Sets Union by Size

Claim: Sets unioned by size have a height of at most O(log₂ n)

Claim: An UpTree of height **h** has nodes $\geq 2^h$

Base Case: h = 0

Χ

Base case height is 0, has one node.

VS.

 $2^0 = 1$

Base case holds!

Disjoint Sets Union by Size A **Claim:** An UpTree of height **h** has nodes $\geq 2^{h}$ IH: Claim true for up to ci-l. Prove for c. Let A, B be two sets, Let B be the larger set. (Always mini-A into B) Must show all cases of height (ase 1: h(A) Ch(B) $\lambda^{*}_{A} h(A) = h(B)$ $3^{\circ}, h(A) > h(B)$

Disjoint Sets Union by Size

Case 3: h(A) > h(B)

Claim: An UpTree of height **h** has nodes $\geq 2^h$ **IH:** Claim is true for < i unions, prove for *i*th union (sets A and B). (We have done i - 1 total unions and plan to do **one** more) Without loss of generality, let B be the larger set BY SIZE We must explore how height changes for each case: **Case 1:** h(A) < h(B) Α \leftarrow ... **Case 2:** h(A) == h(B)

?

?

$size(B) \ge size(A)$ **Disjoint Sets Union by Size Claim:** An UpTree of height **h** has nodes $\geq 2^h$ **IH:** Claim is true for < i unions, prove for *i*th union (sets A and B). **Case 1:** height(A) < height(B) Best rase! Size + height agree. Height doesn't change -> h(B) = h(B') IH: $S(A) \ge \lambda^{h(A)}$ $S(B) \ge \lambda^{h(b)}$ $\begin{bmatrix} Size (B') = 2 & h(A) & (hB) \\ \uparrow & \uparrow & \downarrow \\ \uparrow & \uparrow & \downarrow \\ \uparrow & \uparrow & \downarrow \\ \uparrow & \downarrow & \downarrow \\ \uparrow & \downarrow & \downarrow \\ her & B & By def & By losic \\ \end{bmatrix}$ hB

Disjoint Sets Union by Size

Claim: An UpTree of height **h** has nodes $\geq 2^h$ $\land \stackrel{?}{\geq} \downarrow$

IH: Claim is true for < i unions, prove for *i*th union (sets A and B).

 $size(B) \ge size(A)$

h(B')

Case 1: height(A) < height(B)</pre>

Ideal case where size and height in agreement!

Height doesn't change (h(B') = h(B)).

By IH: $size(A) \ge 2^{h(A)}$ $size(B) \ge 2^{h(B)}$ $size(B') = size(A) + size(B) = 2^{h(A)} + 2^{h(B)} \ge 2^{h(B)} = 2^{h(B')}$

Disjoint Sets Union by Size

Claim: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for *i*th union (sets A and B).

Case 2: height(A) == height(B)

If Marge two same height trees, height = height +1

 $size(B) \ge size(A)$

 $size(B) \ge size(A)$ **Disjoint Sets Union by Size Claim:** An UpTree of height **h** has nodes $\geq 2^h$ **IH:** Claim is true for < i unions, prove for *i*th union (sets A and B). h(B') = h(B) + 1**Case 2:** height(A) == height(B) If we merge two equal height trees, height always increase by 1 By IH: $size(A) \ge 2^{h(A)}$ $size(B) \ge 2^{h(B)}$ $size(B') = size(A) + size(B) = 2^{h(A)} + 2^{h(B)} h(A) = h(B)$ $= 2^{h(B)} + 2^{h(B)}$ $= 2 * 2^{h(B)} = 2^{h(B)+1} \ge 2^{h(B')}$

Disjoint Sets Union by Size

Claim: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for *i*th union (sets A and B).

Case 3: height(A) > height(B)

h(B') = h(A) + 1

 $size(B) \ge size(A)$

 $size(B) \ge size(A)$ **Disjoint Sets Union by Size Claim:** An UpTree of height **h** has nodes $\geq 2^h$ **IH:** Claim is true for < i unions, prove for *i*th union (sets A and B). $N(\beta')$ **Case 3:** height(A) > height(B) Merging taller tree into smaller — height increase to height(A)+1! By IH: $size(A) \ge 2^{h(A)}$ $size(B) \ge 2^{h(B)}$ $size(B') = size(A) + size(B) \ge 2$ size(A) $= 2 * 2^{h(A)} = 2^{h(A)+1} > 2^{h(B')}$

Disjoint Sets Union by Size

size(B) \geq size(A)

Proven: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for *i*th union.

h~0(109 1)

Each case we saw we have $n \ge 2^h$. for a set of hight h

Disjoint Sets Find

Find(6)

As we walk up a tree, why cant we fix it?

After doing find, update uptree

696

Claim: why not reach for

Disjoint Sets Find

```
1 int DisjointSets::find(int i) {
2 if (s[i] < 0) { return i; }
3 else { return find(s[i]); }
4 }</pre>
```

As we walk up a tree, why cant we fix it?

This is **path compression:**

Find(6)

Path Compression

Find(6)

This seems good — but how good in theory?

Post-Class Edit

We didn't have time to go over this proof in detail!

You should understand path compression but this proof (and rank) is outside scope!

Path Compression Analysis

Two major problems here:

1) Our efficiency changes **over repeated calls to find()**

2) Our height changes so we cant use union by height

Amortized Time Review

We have **n items**. We make **n insert()** calls.

We are interested in the **worst case work** possible **over n calls**.

Amortized Time (Path Compression)

We have **n items** in an Uptree. We make **m find()** calls.

We are interested in the **worst case work** possible **over m calls**.

Union by Rank (Not Height)

Once I do path compression, I change the height of tree!

So we need a new way of approximating height.

Rank is a way of remembering what our height was before P.C.

Union by Rank (Not Height)

New UpTrees have rank = 0

Let A, B be two sets being unioned. If:

rank(A) == rank(B): The merged UpTree has rank + 1

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)

(7 Rank only incleases if we nerse 2 sets of same rank

4+1

New UpTrees have rank = 0 - A way of set of rank (,

Let A, B be two sets being unioned. If:

rank(A) == rank(B): The merged UpTree has rank + 1

120

620

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)

(=) (=3

Key Properties of UpTree by rank w/ PC The parent of a node is always higher rank than the node. This comes from how we set up rank union There are at least $1 \ge 2^r$ nodes in a root of rank r. Proof by Induction T Proof by Induction: To create rank r set, we merge two r - 1 sets By IH (not shown), those sets have $2^{r-1} + 2^{r-1} = 2^r$ nodes For any integer r, there are at most $\frac{n}{2^r}$ nodes of rank r. A rewrite of the above logic given n nodes

Put every non-root node in a bucket by rank!

Where did number range come from?

	Ranks	Bucket
	-70/	0
ructure buckets to store ranks $[r, 2^r - 1]$	1	1
	2 - 3	2
	4 - 15	3
	→ 16 – 65535	4
nere did number range come from?	65536 – 2^{65536}-1	L 5
Didnt have time f	x 2 Droof	Soliy

Iterated Logarithm Function (*log***n*) The number of times you can take a log of a number $\log^{*}(n) = \begin{cases} 0 & , n \leq 1 \\ 1 + \log^{*}(\log(n)) & , n > 1 \end{cases}$ $, n \leq 1$ $2^{65536} \int_{0}^{0} \frac{10}{2}$ $2^{16} = 65536$ $105 \quad 2^{4} = 16$ $log * (2^{65536}) = 5 = 6$ Not a true constant but... (5 considus a constant

The work of **find(x)** are the steps taken on the path from a node x to the root (or immediate child of the root) of the UpTree containing x

We can split this into two cases:

Case 1: We take a step from one bucket to another bucket.

Case 2: We take a step from one item to another inside the same bucket.

The work of **find(x)** are the steps taken on the path from a node x to the root (or immediate child of the root) of the UpTree containing x

We can split this into two cases:

Case 1: We take a step from one bucket to another bucket.

We have at most log * (n) buckets so for **m** finds, this is O(m log * n)

u

Case 2: We take a step from one item to another inside the same bucket.

Let's call this the step from **u** to **v**.

Every time we do this, we do path compression:

We set parent(u) a little closer to root

Case 2: We take a step from one item to another *inside* the same bucket. Let's call this the step from **u** to **v**.

Case 2 work is *n* log

(n)

Every time we do this, we do path compression:

We set parent(u) a little closer to root

How many total times can I do this for each **u** in a bucket?

By definition of our bucket ranges $\sim 2^r$

How many nodes are in bucket r?

By definition of how we set up rank: $\frac{n}{2^r}$

Given we have **log*(n)** buckets:

Final Result

We have **n items** in an Uptree. We make **m find()** calls. Total work is:

Amortized (n + m) log * (n)

In terms of real world data, this is practically a constant.

Alternative Not-Actually-A-Proof

Unproven Claim: A disjoint set implemented with smart union and path compression with **m** find calls and **n** items has a worst case

running time of **inverse Ackerman.** $O(m \ \alpha(n))$

This grows very slowly to the point of being treated a constant in CS.