
Department of Computer Science

Data Structures
Disjoint Sets 2

October 18, 2024 CS 225
Brad Solomon

Learning Objectives

Discuss how improvements affect efficiency

Continue to improve implementation of disjoint sets

Disjoint Sets

Find(T key)

Union(T k1, T k2)

makeSet(vector<T> items)

ADT:

Key Ideas:

Every item exists in exactly one set

Every item in each set has same representation

Every set has a different representation

2 5 9

7

0 1 4 8 3 6

Disjoint Sets – Best and Worst UpTree

4

3
2

4

3 1

2

1

1 2 3 40

3 4 2 -1

1 2 3 40

4 4 4 -1

Disjoint Set Implementation

0 1 4 2 7 3 5 6

Store an UpTree as an array, canonical items store height / size

0 1 2 3 4 5 6 7

0 0 3 3 2

Find(k): Repeatedly look up values until negative value

Union(k1, k2): Update smaller canonical item to point to larger

Update value of remaining canonical item

Disjoint Sets Union by Size

3210 10

0 1 2 3

-1 -1 -1 -1

321

0

0 1 2 3

0 1 2 3 0 1 2 3

32

21

0

3

Disjoint Sets Union by Size

3210 10

0 1 2 3

-1 -1 -1 -1

321

0

0 1 2 3

-2 0 -1 -1

0 1 2 3

-3 0 0 -1

0 1 2 3

-4 0 0 0

32

21

0

3

Disjoint Sets Union by Height

3210 10

0 1 2 3

-1 -1 -1 -1

321

0

0 1 2 3

0 1 2 3 0 1 2 3

32

21

0

3

Disjoint Sets Union by Height

3210 10

0 1 2 3

-1 -1 -1 -1

321

0

0 1 2 3

-2 0 -1 -1

0 1 2 3

-2 0 0 -1

0 1 2 3

-2 0 0 0

32

21

0

3

Disjoint Sets – Smart Union

0 1 2 3

6

7

8 9

4

5

10

11

Union by height

Union by size

Idea: Keep the height of the
tree as small as possible.

Idea: Minimize the number of
nodes that increase in height

4 … 7

-4 -3
4 … 7

-4 4

4 … 7

-4 -8

4 … 7

7 -12

Before Union After Union

Two O(1) methods of combining two sets

Claim: Both limit height to: O(log n).

Disjoint Sets Find
int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find(s[i]); }
}

1
2
3
4

0 1 4 8

0

1

4

8

1 2 3 4 5 6 70

84

8 9

4

Find(1)

Does implementation work on height / size?

-3/-4

Disjoint Sets Union

0

1

4

8

1 2 3 4 5 6 70

8 -2 -4 34

8 9

4

unionBySize(4, 3)

void DisjointSets::unionBySize(int root1, int root2) {
 int newSize = arr_[root1] + arr_[root2];

 if (arr_[root1] < arr_[root2]) {

 arr_[root2] = root1;

 arr_[root1] = newSize;

 } else {

 arr_[root1] = root2;

 arr_[root2] = newSize;

 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

3

6

Disjoint Sets Union by Size
Claim: Sets unioned by size have a height of at most O(log2 n)

Claim: An UpTree of height h has nodes ____________≥

Base Case:

Disjoint Sets Union by Size
Claim: Sets unioned by size have a height of at most O(log2 n)

Claim: An UpTree of height h has nodes ≥

Base Case: h = 0

2h

X

Base case height is 0, has one node.

20 = 1

vs.

Base case holds!

Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

IH:

Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

(We have done total unions and plan to do one more)i − 1

? ?

Case 1: h(A) < h(B)

Case 2: h(A) == h(B)

Case 3: h(A) > h(B)
size(B) size(A)≥

…

…

A

B

IH: Claim is true for unions, prove for th union (sets A and B).< i i

Without loss of generality, let B be the larger set BY SIZE

We must explore how height changes for each case:

Disjoint Sets Union by Size

Case 1: height(A) < height(B)

size(B) size(A)≥

Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union (sets A and B).< i i

Disjoint Sets Union by Size

Case 1: height(A) < height(B)

size(B) size(A)≥

Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union (sets A and B).< i i

Ideal case where size and height in agreement!

Height doesn’t change .(h(B′) = h(B))
By IH: size(A) ≥ 2h(A) size(B) ≥ 2h(B)

 size(B′) = size(A) + size(B) = 2h(A) + 2h(B) ≥ 2h(B) = 2h(B′)

Disjoint Sets Union by Size size(B) size(A)≥

Case 2: height(A) == height(B)

Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union (sets A and B).< i i

Disjoint Sets Union by Size size(B) size(A)≥

Case 2: height(A) == height(B)

Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union (sets A and B).< i i

If we merge two equal height trees, height always increase by 1

By IH: size(A) ≥ 2h(A) size(B) ≥ 2h(B)

size(B′) = size(A) + size(B) = 2h(A) + 2h(B)

= 2h(B) + 2h(B)

= 2 * 2h(B) = 2h(B)+1 ≥ 2h(B′)

Disjoint Sets Union by Size

Case 3: height(A) > height(B)

Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union (sets A and B).< i i

size(B) size(A)≥

Disjoint Sets Union by Size

Case 3: height(A) > height(B)

Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union (sets A and B).< i i

Merging taller tree into smaller — height increase to height(A)+1!

By IH: size(A) ≥ 2h(A) size(B) ≥ 2h(B)

 size(B′) = size(A) + size(B) ≥ 2 size(A)

= 2 * 2h(A) = 2h(A)+1 ≥ 2h(B′)

size(B) size(A)≥

Disjoint Sets Union by Size
Proven: An UpTree of height h has nodes ≥ 2h

Each case we saw we have . n ≥ 2h

size(B) size(A)≥

IH: Claim is true for unions, prove for th union.< i i

Disjoint Sets Find Find(6)

1

2

3

6

7

8

9

4

5

10

11
As we walk up a tree, why cant we fix it?

int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find(s[i]); }
}

1
2
3
4

Disjoint Sets Find

int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else {
 int root = find(s[i]);
 s[i] = root;
 return root;
 }
}

1
2
3
4
5
6
7
8

Find(6)

1

2

3

6

7

8

9

4

5

10

11
As we walk up a tree, why cant we fix it?

int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find(s[i]); }
}

1
2
3
4

This is path compression:

Path Compression

1

2

3

6 7

8

94

5

10

11

Find(6)

1

2

3

6

7

8

9

4

5

10

11

This seems good — but how good in theory?

Post-Class Edit

We didn’t have time to go over this proof in detail!

You should understand path compression but this proof (and
rank) is outside scope!

Path Compression Analysis
Two major problems here:

1) Our efficiency changes over repeated calls to find()

2) Our height changes so we cant use union by height

Amortized Time Review
We have n items. We make n insert() calls.

We are interested in the worst case work possible over n calls.

Amortized Time (Path Compression)
We have n items in an Uptree. We make m find() calls.

We are interested in the worst case work possible over m calls.

1

2

3

6

7

8

9

4

5

10

11

Union by Rank (Not Height)
Once I do path compression, I change the height of tree!

So we need a new way of approximating height.

Rank is a way of remembering what our height was before P.C.

Union by Rank (Not Height)
New UpTrees have rank = 0

Let A, B be two sets being unioned. If:

rank(A) == rank(B): The merged UpTree has rank + 1

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)

Union by Rank (Not Height)
New UpTrees have rank = 0

Let A, B be two sets being unioned. If:

rank(A) == rank(B): The merged UpTree has rank + 1

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)

Key Properties of UpTree by rank w/ PC
The parent of a node is always higher rank than the node.

For any integer , there are at most nodes of rank .r
n
2r

r

There are at least nodes in a root of rank .≥ 2r r

Key Properties of UpTree by rank w/ PC
The parent of a node is always higher rank than the node.

For any integer , there are at most nodes of rank .r
n
2r

r

There are at least nodes in a root of rank .≥ 2r r

This comes from how we set up rank union

(Take larger of two rank or add one if tied)

Proof by Induction: To create rank set, we merge two setsr r − 1
By IH (not shown), those sets have nodes2r−1 + 2r−1 = 2r

A rewrite of the above logic given n nodes

Amortized Time (Rank w/ Path Compression)
Put every non-root node in a bucket by rank!

Structure buckets to store ranks [r, 2r − 1]

Ranks Bucket

0 0
1 1

2 - 3 2

4 - 15 3

16 – 65535 4

65536 – 2^{65536}-1 5Where did number range come from?

Iterated Logarithm Function ()𝑙𝑜𝑔∗𝑛
The number of times you can take a log of a number

log * (n) =
0

1 + log * (log(n)) , n > 1

, n ≤ 1{
log * (265536) = 5

20 = 1
21 = 2
22 = 4
24 = 16
216 = 65536
265536

The work of find(x) are the steps taken on the path from a node x to the
root (or immediate child of the root) of the UpTree containing x

Amortized Time (Rank w/ Path Compression)

We can split this into two cases:

Case 1: We take a step from one bucket to another bucket.

Case 2: We take a step from one item to another inside the same bucket.

The work of find(x) are the steps taken on the path from a node x to the
root (or immediate child of the root) of the UpTree containing x

Amortized Time (Rank w/ Path Compression)

We can split this into two cases:

Case 1: We take a step from one bucket to another bucket.

Case 2: We take a step from one item to another inside the same bucket.

We have at most buckets so for m finds, this is log * (n) O(m log * n)

Let’s call this the step from u to v.

u

v
vu

Every time we do this, we do path compression:
We set parent(u) a little closer to root

Amortized Time (Rank w/ Path Compression)
Case 2: We take a step from one item to another inside the same bucket.
Let’s call this the step from u to v.

u

v
vu

Every time we do this, we do path compression:
We set parent(u) a little closer to root

How many total times can I do this for each u in a bucket?

How many nodes are in bucket r?

By definition of our bucket ranges ~2r

By definition of how we set up rank:
n
2r

Case 2 work is n log * (n)Given we have log*(n) buckets:

Final Result

We have n items in an Uptree. We make m find() calls. Total work is:

Amortized (n + m) log * (n)
In terms of real world data, this is practically a constant.

Alternative Not-Actually-A-Proof

Unproven Claim: A disjoint set implemented with smart union and
path compression with m find calls and n items has a worst case

running time of inverse Ackerman. [O(m α(n))]
This grows very slowly to the point of being treated a constant in CS.

