Data Structures

Disjoint Sets

CS 225 October 16, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Exam 3 (10/23 — 10/25)

Autograded MC and one coding question
Manually graded short answer prompt
Practice exam on PL

Topics covered can be found on website

Registration started October 10

https://courses.engr.illinois.edu/cs225/fa2024/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Introduce and implement disjoint sets
Discuss efficiency of disjoint sets

ldentify improvements to implementation (and efficiency)

Storing and manipulating dynamic groups

We need a data structure which can efficiently look
up (and change) group dynamics

Disjoint Set ADT

A data structure designed to store relationships between items

Operations:
find(k) — returns “set representation” for item x
union(sl, s2) — Merge sl and s2 into one set

Constructor — Make a new empty set

Disjoint Sets ‘Set Representation’

All items in a set have the same ‘Set Representation’

Operation:
find(4) == £find(8)

find(4) '= £find(3)

Disjoint Sets ‘Set Representation’

Each set is represented by a canonical element (internally defined)

Operation:
find(4) == £find(8)

find(4) '= £find(3)

Disjoint Sets

The union operation combines two sets into one set.

Operation:
if find(2) '= f£ind(7) {
union(2, 7);

}

Disjoint Sets

We add new items to our‘universe’ by making new sets.

Operation:

makeSet (10) ;

Disjoint Sets ADT

Constructor
makeSet
Find

Union

Disjoint Sets
ADT:

makeSet(vector<T> items)

Find(T key)

Union(T k1, T k2)

Key Ideas:

Every item exists in exactly one set

Every item in each set has same representation

Every set has a different representation

Disjoint Sets

How might we implement a disjoint set?

Implementation #1

Allocate array for all keys, storing canonical key as index

Find(k):

Union(k;, k>):

Implementation #1

Allocate array for all keys, storing canonical key as index
o 1 2 3 4 5 6 7
Find(k): Look up value in array

Union(ki, k2): Update every item in one set with new representation

Implementation #2

Same idea but store canonical elements as -1

Find(k):

Union(k;, k>):

2 Union(4, 7)

Implementation

Same idea but store canonical elements as -1

Find(k): Repeatedly look up values until -1

Union(ki, k2): Update one canonical item to point at the other

Implementation #2

Same idea but store canonical elements as -1

Union(4, 7)

Find(7)

Implementation #2

Same idea but store canonical elements as -1

Union(4, 7): A[7]=2 0 0 °

Find(7): A[7] -> A[2] -> A[Q]

Disjoint Sets

5
m ’ @fb ®

o 1 2 3 4 5 6 7 8 9

Disjoint Sets

5
m ’ @fb ®

UpTrees Best and Worst Case

What does a best case UpTree look like?

What does a worst case UpTree look like?

Disjoint Sets Representation @

Implemented as an array where the value of key is index in array
The values inside the array stores our sets as an UpTree

The value -1 is our representative element (the root)
All other set members store the index to a parent of the UpTree

Big O for Find:

Big O for Union:

jo

Disjoint Sets Find

int DisjointSets::find(int i) {
if (s[i] < 0) { return i; }
else { return find(s[i]); }

}

BWN =

Running time?

What is ideal UpTree?

Disjoint Sets Union

b WN =

int DisjointSets::union(int rl, int r2) {
// Naive Implementation

s[r2] = rl;
}

Disjoint Sets Union Union(4, 0)

int DisjointSets::union(int rl, int r2) {
// Naive Implementation

s[r2] = rl; |
} OO

b WN =
>

Disjoint Sets - Union How do I want to merge these sets?

A

of \@
o

GRONOHOS

o
[EEY
N
w
S
%))
(o))
N
(0)
(o)

10 | 11

<))
o))
o))
0
_
)
N
=
N
N
IS
wn

Union(4, 7)

Union(7, 4)

Disjoint Sets - Smart Union

A

of \@
o

GRONOOs

Unionbyheight [o 1 [2 z3[a[5s5 67

(o0}

10

11

~N

Union(4, 7)

Idea: Keep the height of
the tree as small as
possible.

Clever Trick: If we union by height, store -1*(height+1) in canonical!

Disjoint Sets - Smart Union

A

of \@
o

GRONOOs

Union by size o | 1|2 |3|a]|5]|6]7

(o0}

10

11

~N

Union(7, 4)

Idea: Minimize the
number of nodes that
increase in height

Clever Trick: If we union by size, store -1*(size) in canonical!

Disjoint Sets - Smart Union

Unionbyheight 0 1 2 3 4 5

Unionbysize 0 1 2 3 4 5

Both guarantee the height of the tree is:

-12

N ECROCa0x

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

