
Department of Computer Science

Data Structures
Disjoint Sets

October 16, 2024 CS 225
Brad Solomon

Exam 3 (10/23 — 10/25)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam on PL

Topics covered can be found on website

Registration started October 10

https://courses.engr.illinois.edu/cs225/fa2024/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Discuss efficiency of disjoint sets

Introduce and implement disjoint sets

Identify improvements to implementation (and efficiency)

Storing and manipulating dynamic groups

A

C D

E

B

G H

F

We need a data structure which can efficiently look
up (and change) group dynamics

Disjoint Set ADT

2 5 9 7

0 1 4 8 3 6

A data structure designed to store relationships between items

Operations:

find(k) — returns “set representation” for item x

union(s1, s2) — Merge s1 and s2 into one set

Constructor — Make a new empty set

Disjoint Sets ‘Set Representation’

2 5 9 7

0 1 4 8 3 6

All items in a set have the same ‘Set Representation’

Operation:

find(4) == find(8)

find(4) != find(3)

Disjoint Sets ‘Set Representation’

2 5 9 7

0 1 4 8 3 6

Each set is represented by a canonical element (internally defined)

Operation:

find(4) == find(8)

find(4) != find(3)

0 1 2 3 4 5 6 7 8 9

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

The union operation combines two sets into one set.

Operation:
if find(2) != find(7){
union(2, 7);

}

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

We add new items to our ‘universe’ by making new sets.

Operation:

makeSet(10);

Disjoint Sets ADT
Constructor

Find

Union

makeSet

Disjoint Sets

Find(T key)

Union(T k1, T k2)

makeSet(vector<T> items)

ADT:

Key Ideas:

Every item exists in exactly one set

Every item in each set has same representation

Every set has a different representation

Disjoint Sets
How might we implement a disjoint set?

Implementation #1

Find(k):

Union(k1, k2):

0 1 4 2 7 3 5 6

Allocate array for all keys, storing canonical key as index

0 1 2 3 4 5 6 7

Implementation #1

Find(k): Look up value in array

Union(k1, k2): Update every item in one set with new representation

0 1 4 2 7 3 5 6

Allocate array for all keys, storing canonical key as index

0 1 2 3 4 5 6 7

4 4 7 5 4 5 5 7

Implementation #2

Find(k):

Union(k1, k2):

0 1 4 2 7 3 5 6

Same idea but store canonical elements as -1
0 1 2 3 4 5 6 7

-1 0 -1 -1 0 3 3 2

Implementation #2

Find(k): Repeatedly look up values until -1

Union(k1, k2): Update one canonical item to point at the other

0 1 4 2 7 3 5 6

Same idea but store canonical elements as -1
0 1 2 3 4 5 6 7

-1 0 -1 -1 0 3 3 2

Union(4, 7)

Implementation #2

0 1 4 2 7 3 5 6

Same idea but store canonical elements as -1
0 1 2 3 4 5 6 7

-1 0 -1 -1 0 3 3 2

Union(4, 7)

Find(7)

Implementation #2

0 1 4 2 7 3 5 6

Same idea but store canonical elements as -1
0 1 2 3 4 5 6 7

-1 0 0 -1 0 3 3 2

Union(4, 7): A[7]=2

Find(7): A[7] -> A[2] -> A[0]
7

2

0

1 4

3

5 6

UpTrees

1 2 30

0 1 2 3

1 2 30

1 2 30 1 2 30

0

1

3

2

0
1

2

3

0 1 2 3

10

3

2

Disjoint Sets

2 5 9 7 0 1 4 8 3 6

0

1

2

345

6

7

8
9

0 1 2 3 4 5 6 7 8 9

Disjoint Sets

2 5 9 7 0 1 4 8 3 6

0

1

2

345

6

7

8
9

0 1 2 3 4 5 6 7 8 9

4 8 5 -1 -1 -1 3 -1 4 5

UpTrees Best and Worst Case

1 2 30

1 2 30

What does a best case UpTree look like?

What does a worst case UpTree look like?

Disjoint Sets Representation
Implemented as an array where the value of key is index in array

The values inside the array stores our sets as an UpTree

The value -1 is our representative element (the root)

All other set members store the index to a parent of the UpTree

3

2

51

Big O for Find:

Big O for Union:

Disjoint Sets Find
int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find(s[i]); }
}

1
2
3
4

0 1 4 8

0

1

4

8

1 2 3 4 5 6 70

8 -14

8 9

4

Find(1)

Running time?

What is ideal UpTree?

Disjoint Sets Union
int DisjointSets::union(int r1, int r2) {
 // Naive Implementation

 s[r2] = r1;
}

1
2
3
4
5 0

1

4

8

1 2 3 4 5 6 70

8 -1-1

8 9

4

Union(0, 4)

Disjoint Sets Union
int DisjointSets::union(int r1, int r2) {
 // Naive Implementation

 s[r2] = r1;
}

1
2
3
4
5 0

1

4

8

1 2 3 4 5 6 70

8 -1-1

8 9

4

Union(4, 0)

Disjoint Sets – Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 -1 10 7 -16

8 9

7 7

10 11

4 5

How do I want to merge these sets?

Union(7, 4)

Union(4, 7)

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by height Idea: Keep the height of
the tree as small as
possible.

Union(4, 7)

Clever Trick: If we union by height, store -1*(height+1) in canonical!

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by size Idea: Minimize the
number of nodes that
increase in height

Union(7, 4)

Clever Trick: If we union by size, store -1*(size) in canonical!

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

Union by height

Union by size

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

Both guarantee the height of the tree is: _____________.

0 1 2 3 4 5 6 7 8 9 10 11

6 6 6 8 -4 10 7 4 7 7 4 5

0 1 2 3 4 5 6 7 8 9 10 11

6 6 6 8 7 10 7 -12 7 7 4 5

