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Exam 3 (10/23 — 10/25)

Autograded MC and one coding question
Manually graded short answer prompt
Practice exam on PL

Topics covered can be found on website

Registration started October 10

https://courses.engr.illinois.edu/cs225/fa2024/exams/
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Learning Objectives

Introduce and implement dISJOInt sets >

Discuss efficiency of dlSjOlnt sets

ldentify improvements to |mplementat|on (and efficiency)
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Storing and manipulating dynamic groups

We need a data structure which can efficiently look
up (and change) group dynamics




Disjoint Set ADT

A data structure designed to store relationships between items
e

find (k) — returns“set representation” for item x

Cmm—

union(sl, s2)— Mergeslands2 into one set
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Operations:
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Constructor — Make a new set




Disjoint Sets ‘Set Representation’

All items in a set have the same ‘Set Representation’
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Disjoint Sets ‘Set Representation’

Each set is represented by a canonlcal element ( mternally defined)
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Operation:

find(4) == £find(8)
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find(4) '= £find(3)
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Disjoint Sets

The union operation combines two sets into one set T caromlee
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if find(2) ! nd(7){
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Disjoint Sets

We add new items to our‘universe’ by making new sets.

Operation:

makeSet (10) ;
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Disjoint Sets @
ADT:

makeSet(vector<T> items)
Find(T key) — wy  gfoug
Union(T k1, T k2) = & sebs  teoselle

Key Ideas: e Plesepgtive
Every item exists in exactly one set h
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Every item in each set has same representation” noee
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Every set has a different representation  “—




Disjoint Sets

How might we implement a disjoint set?
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Implementation #1

Allocate array for all keys, storing canonical key as index
o 1 2 3 4 5 6 7

Find(k): Look up value inarray O (I )
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Union(ki, k2): Update every item in one set with new representation
O /A)




Implementation #2

Same idea but store canonical elements as -1 Flad /2 Fid(7)
-1 0 g L 0 3 3
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Implementation #2

Same idea but store canonical elements as -1

Find(k): Repeatedly look up values until -1

Union(ki, k2): Update one canonical item to point at the other
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Implementation #2 © .3
x), 3

7
Same idea but store canonical elements as -1 O O @

Union(4, 7) - <thig X o har elve 0
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Implementation #2

Same idea but store canonical elements as -1
4 5
@ R

o@ e
Union(4, 7): A[7]=2
G FAd (5] >0

Find(7): A[7] -> A[2] -> A[Q]




UpTrees
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Disjoint Sets
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Disjoint Sets
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UpTrees Best and Worst Case

What does a best case UpTree look like?
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What does a worst case UpTree look like?
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Disjoint Sets Representation @

Implemented as an array where the value of key is index in array

The values inside the array stores our sets as an UpTree

The value -1 is our representative element (the root)
\

All other set members store the index to a parent of the UpTree

Big O for Find: () <h) 1Ehen
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Disjoint Sets Find g

int DisjointSets::find(int i) {
if ( s[i] < 0 ) { return i; } 01438
else { return find( s[i] ); }
} )
ng time? x o of
Running time? () (h) SONo, n)
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Disjoint Sets Union o)

int DisjointSets::union(int rl, int r2) {
// Naive Implementation

s[r2] = rl;
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Disjoint Sets Union Union(4, 0)

int DisjointSets::union(int rl, int r2) {
// Naive Implementation
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Disjoint Sets - Union How do I want to merge these sets?
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Union(4, 7)
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Disjoint Sets - Smart Union Union(4, 7)
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Union by height | o 1 2 3 4 8 9 | 10 | 11 | Idea: Keep the height of
. the tree as small as
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Clever Trick: If we union by height, store -1*(height+1) in canonical!




Disjoint Sets - Smart Union
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Union(7, 4)
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Union by size o | 1|2 |3|a]|s5|6]|7]Ss 10 | 11
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Idea: Minimize the
number of nodes that
increase in height

Clever Trick: If we union by size, store -1*(size) in canonical!



Disjoint Sets - Smart Union @
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6 7 9 10 11 Idea: Keep the height of

the tree as small as

Union by height 0
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Disjoint Set Implementation

Store an UpTree as an array, canonical items store height / size

0 0O 3

Find(k): Repeatedly look up values until negative value

Union(ki, k2): Update smaller canonical item to point to larger

Update value of remaining canonical item




