Data Structures

Disjoint Sets
CS 225 October 16, 2024

Brad Solomon
N°3>°‘}7 Pt

—

UNIVERSITY OF Tl are no

ILLINOIS .. .

URBANA-CHAMPAIGN
§Yq/+ C]ass

Department of Computer Science

T T onthe vy,

Survey EC

Current EC at semesters end: +12

Credit for stickers, lists, and IEF

ee—_—

Great work! (’7 B v 'deo !

Exam 3 (10/23 — 10/25)

Autograded MC and one coding question
Manually graded short answer prompt
Practice exam on PL

Topics covered can be found on website

Registration started October 10

https://courses.engr.illinois.edu/cs225/fa2024/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Introduce and implement dISJOInt sets >

Discuss efficiency of dlSjOlnt sets

ldentify improvements to |mplementat|on (and efficiency)

N

Storing and manipulating dynamic groups

We need a data structure which can efficiently look
up (and change) group dynamics

Disjoint Set ADT

A data structure designed to store relationships between items
e

find (k) — returns“set representation” for item x

Cmm—

union(sl, s2)— Mergeslands2 into one set

s

Operations:

e ————

Constructor — Make a new set

Disjoint Sets ‘Set Representation’

All items in a set have the same ‘Set Representation’

- -

Operation: How %o sture? ar labtl
£ind(4) == £ind(8) O Share edlress <5 Ldx of 4 Sel
O X & x L? k/yl vall ¢ Pa./ S 5
find(4) != find(3) 5 ittn wdue Js Seb

. i

S x v

Disjoint Sets ‘Set Representation’

Each set is represented by a canonlcal element (mternally defined)
T~
B »
7

Operation:

find(4) == £find(8)
gl)

find(4) '= £find(3)

g 3

Disjoint Sets

The union operation combines two sets into one set T caromlee

elfw@,ﬁ
fc». e, ﬂw/ Sp,L

0148

Operation:
if find(2) ! nd(7){

:
unlon(? "V s pa) do o ser
€[y Yo ot et

Disjoint Sets

We add new items to our‘universe’ by making new sets.

Operation:

makeSet (10) ;

O

Disjoint Sets @
ADT:

makeSet(vector<T> items)
Find(T key) — wy gfoug
Union(T k1, T k2) = & sebs teoselle

Key Ideas: e Plesepgtive
Every item exists in exactly one set h
~— —_— o~

o i ~ _(aqon'ca ety
Every item in each set has same representation” noee

pa
Every set has a different representation “—

Disjoint Sets

How might we implement a disjoint set?

L/> Mﬁ)_ﬁ /D\\(11;04 Q/)l

Uns.'5,00 0 Mmay

Implementation 1/7 Arver 5 sz
AIIocate array for all keys storing canonlcal key as index ﬁ§:+ L
345 6 1
@-@ YE65 5 g
/ We pMk (Gnaneal G\ ot §c, Vg wtﬁ* Seb Hai s,

Find(k): Loc)}'(“p ',/\dex L(O('>

/ ('Paﬁ >
=, A
([- O-P-c S’aw

Union(ki, k2): WalA acoss grray 4 qp}ah WY A= O

@(h) 0 < X

Implementation #1

Allocate array for all keys, storing canonical key as index
o 1 2 3 4 5 6 7

Find(k): Look up value inarray O (I)

/\!\/ +(aJ€0{\.p

Union(ki, k2): Update every item in one set with new representation
O /A)

Implementation #2

Same idea but store canonical elements as -1 Flad /2 Fid(7)
-1 0 g L 0 3 3

Find(k): Qe PPQ,}. lCUk“P‘ u,‘l-"| "l_

L g(n)
Union(ki, ka): Update 9ne (anon'col clemmt Jo Poar Yo Ot
1 7 |

Implementation #2

Same idea but store canonical elements as -1

Find(k): Repeatedly look up values until -1

Union(ki, k2): Update one canonical item to point at the other

L o

e~
Implementation #2 © .3
x), 3

7
Same idea but store canonical elements as -1 O O @

Union(4, 7) - <thig X o har elve 0

-_——

° &1\
Find(7) = wglk up fop — O

Implementation #2

Same idea but store canonical elements as -1
4 5
@ R

o@ e
Union(4, 7): A[7]=2
G FAd (5] >0

Find(7): A[7] -> A[2] -> A[Q]

UpTrees

0 1 2 3
NIERS R

O)

1

3

—

&
o
1;i)

Disjoint Sets

L@g % ’ d b %

U_\)\“(é’{é

K_A o 1 2 3 4 5 6 7 8 9
> Y - 5

0’5 0]//0\/

({P

Disjoint Sets

5
m ’ @fb ®

UpTrees Best and Worst Case

What does a best case UpTree look like?

o0

What does a worst case UpTree look like?

O (n)

o%@

(v|’ "'"

A

0

(€8]

'

O

‘v\-\)

@707 D

0

1

2

3

1

>

S

Disjoint Sets Representation @

Implemented as an array where the value of key is index in array

The values inside the array stores our sets as an UpTree

The value -1 is our representative element (the root)
\

All other set members store the index to a parent of the UpTree

Big O for Find: () <h) 1Ehen

(gwortng i Yo get

%
Big O for Union:
Igo or Union O (') Canon(a ‘b
'

—

Disjoint Sets Find g

int DisjointSets::find(int i) {
if (s[i] < 0) { return i; } 01438
else { return find(s[i]); }
})
ng time? x o of
Running time? () (h) SONo, n)

What is ideal UpTree? / czf;‘ \\/
4

BWN =

//:;}i;kift\\ C:D(I) 4 8 (ﬁﬁz;) '4

Disjoint Sets Union o)

int DisjointSets::union(int rl, int r2) {
// Naive Implementation

s[r2] = rl;

b A o

b WN =

| \

A Ll mugd b Canonl..l

_ 'TOM9f9d- — S -~

—_— S

/

Iﬂfl\)\‘.oc\ He U €A Ghecd

(e

ok Yimg ('f ﬁC/esis)

o\ |»

Disjoint Sets Union Union(4, 0)

int DisjointSets::union(int rl, int r2) {
// Naive Implementation

etz =1, %@ /@\
M e Ce balan ced — @ i@
) @

(eSg |k <é‘4mr\9€$)

b WN =
>

Disjoint Sets - Union How do I want to merge these sets?

he JOoN © ez
/\‘25 @ N = L/
ofololo o
0 1 2 3 4 5 6 7 8 9 10 | 11
6 6 6 8 110 7 1 7 7 4 5

Union(4, 7)

Union(7, 4)

Disjoint Sets - Smart Union Union(4, 7)

A

h=o @
£

o000
L&

Union by height | o 1 2 3 4 8 9 | 10 | 11 | Idea: Keep the height of
. the tree as small as
6 6|6 8|~ 107 % 707 45 ossibe
/F (T BQSC (qﬁc ' S
S.' n l
k»i)) 7 ’l?\(ale

VZ cor h= o 2
Clever Trick: If we union by height, store -1*(height+1) in canonical!

Disjoint Sets - Smart Union

A e

ogoro
@f@ ®

Union(7, 4)

O,
6

[V, N4 1145, J \®

in he 5t ! \®

Union by size o | 1|2 |3|a]|s5|6]|7]Ss 10 | 11
66685{107‘87 a | s

Idea: Minimize the
number of nodes that
increase in height

Clever Trick: If we union by size, store -1*(size) in canonical!

Disjoint Sets - Smart Union @

(omB (S50 (F':MYL /

=

6 7 9 10 11 Idea: Keep the height of

the tree as small as

Union by height 0

——
6 6 6 8 -4 10 7 4 7 4 5 possible
- '

Union by size O 1 2 3 4 5 6 7 8 9 10 11 !dea:Minimize the
o number of nodes that

6 6 6 8 7 10 7 -12 7 7 4 5 increasein height
> _(Q.l}el
Both guarantee the height of the tree is: O[,07 f\) .

N ECRORCnO

Disjoint Set Implementation

Store an UpTree as an array, canonical items store height / size

0 0O 3

Find(k): Repeatedly look up values until negative value

Union(ki, k2): Update smaller canonical item to point to larger

Update value of remaining canonical item

