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Learning Objectives
Discuss the importance of M in a B Tree

Analyze the performance of the B Tree



BTree Properties
A BTrees of order m is an m-ary tree and by definition: 
- All keys within a node are ordered 

- All nodes contain no more than m-1 keys. 
- All internal nodes have exactly one more child than keys 
- All leaves in the tree are at the same level.



BTree Find Find(7)

Base Case: 

If root is empty, return

If leaf, do array find() and return

Recursive Step: 

Array find() for match or first greater value

Recurse on appropriate child 

Tip: Index of first greater value is index of child we want to visit!
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BTree Insertion
Given the appropriate BTreeNode, insert is array insert

M = 5

Insert(1)

Insert(2)

Insert(3)

Insert(4)

Insert(5)

Insert(6)

Insert(7)

Insert(8)



BTree Insertion
When we hit M items, split into three nodes!

M = 5

Insert(1)

Insert(2)

Insert(3)

Insert(4)

Insert(5)

1 2 3 4 5

Insert(6)

Insert(7)

Insert(8)



BTree Insertion
“Given appropriate BTreeNode” == Find()

M = 5

Insert(1)

Insert(2)

Insert(3)

Insert(4)

Insert(5)

Insert(6)

Insert(7)

Insert(8)
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BTree Insertion
If parent node already exists, split adds new key.

M = 5

Insert(1)

Insert(2)

Insert(3)

Insert(4)

Insert(5)

Insert(6)

Insert(7)

Insert(8)
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BTree Insertion
If parent node already exists, split instead adds new key.

M = 5

Insert(1)

Insert(2)

Insert(3)

Insert(4)

Insert(5)

Insert(6)

Insert(7)

Insert(8)

1 2 4 5 7 8

3 6



BTree Insertion
Problem 3: I need to find median value AFTER inserting the Mth value

M = 5

Insert(10)

Insert(5)

Insert(2)2 5 7 9 10

5 10

10

...



BTree Insertion
Problem 3: I need to find median value AFTER inserting the Mth value

M = 5

Insert(10)

Insert(5)

Insert(2)2 5 7 9 10

5 10

10

...

Non-Optimal Solution: Pre-allocate M size arrays for every node!



BTree Recursive Insert
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M = 3

Insert always starts at a leaf but can propagate up repeatedly.

Insert(56),



BTree Recursive Insert
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M = 3

Insert always starts at a leaf but can propagate up repeatedly.

Insert(56),

55



BTree Remove
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BTree removal is complicated! It won’t be part of the lab.

If we have time at the end of the day today we will discuss it



BTree Node (of order m)
Brainstorm together: What value of m should we be using?



BTree of Order M
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If I tell you this is a valid BTree, what is the lower bound of M?



BTree Size Restrictions
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We have max on nodes, but do we have min? Are these trees valid?
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BTree Properties
A BTrees of order m is an m-ary tree and by definition: 
- All keys within a node are ordered 

- All nodes contain no more than m-1 keys. 
- All internal nodes have exactly one more child than keys

Root nodes can be a leaf or have ___________ children.

All non-root, internal nodes have ________________ children.

All leaves in the tree are at the same level.



BTree

3
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28 488

1 2 6 7 25 26 29 4512 14 52 53 55 68

If I tell you this is a valid BTree, what is the precise value of m?



BTree Analysis
Like the BST, BTree height determines the runtime of our operations!

Claim: The BTree structure limits our height to O(logm(n))

Proof: We want to find a relationship for BTrees between the 
number of keys (n) and the height (h).



BTree Analysis
Strategy: 

We will first count the number of nodes, level by level. 
 
Then, we will add the minimum number of keys per node (n). 
 
The minimum number of nodes will tell us the largest possible 
height (h), allowing us to find an upper-bound on height.

Root nodes can be a leaf or have [2, m] children.

All non-root, internal nodes have [ceil(m/2), m] children. 

Key Facts:



BTree Analysis
Minimum number of nodes for a BTree of order m at each level: 

Root:

Level 1:

Level 2:

Level 3:

Level h:



BTree Analysis
The min total number of nodes is the sum of all the levels: 

1 + 2
h−1

∑
k=0

tk  
n−1

∑
i=0

xi =
xn − 1
x − 1

t = ⌈
m
2
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BTree Analysis
The min total number of nodes: 1 + 2

th − 1
t − 1

The min total number of keys: 

t = ⌈
m
2

⌉



BTree Analysis
The min total number of nodes: 1 + 2

th − 1
t − 1

The min total number of keys: 

t = ⌈
m
2

⌉

Root has how many keys? 1

Internal nodes? ⌈
m
2

⌉ − 1 = t − 1

Leaf nodes? ⌈
m
2

⌉ − 1 = t − 1

So we can multiply the fraction by  t − 1

= 1 + 2
th − 1
t − 1

* (t − 1)

= 2th − 1



BTree Analysis
The smallest total number of keys is: 

So an inequality about n, the total number of keys:

Solving for h, since h is the max number of seek operations:

2th − 1

t = ⌈
m
2

⌉



BTree Analysis
The smallest total number of keys is: 

So an inequality about n, the total number of keys:

2th − 1

t = ⌈
m
2

⌉

n ≥ 2th − 1

n + 1 ≥ 2th

logm (n + 1) ≥ logm (2⌈
m
2

⌉h) = logm (mh) = h

h = O(logm n)
Solving for h, since h is the max number of seek operations:



BTree Analysis
This is very powerful!  

As long as I am at least minimally sized, we are O(log n)!



BTree Analysis
Given m=101, a tree of height h=4 has:

Minimum Keys:

Maximum Keys:



BTree
The BTree is still used heavily today!

Improvements such as B+Tree and B*Tree exist far outside class scope



Thinking conceptually: Sorting a queue
How might we build a ‘queue’ in which our front element is the min?



Priority Queue Implementation
insert removeMin

O( n ) O(n)

O(1) O(n)

O( n ) O(1)

O( n ) O(1)

unsorted

sorted

sorted

unsorted



Priority Queue Implementation
insert removeMin
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Thinking conceptually: A tree without pointers
What class of (non-trivial) trees can we describe without pointers?


