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Learning Objectives —7 Fialsh [/ pleasy fakien
Discuss the importance of M in a B Tree g

&

Analyze the performance of the B Tree




BTree Properties L1D-

VlP ‘o Y
A BTrees of order m is an m-ary tree and by definition: <:ldre.,
- All keys within a node are ordered
- All nodes contain no more than m-1 keys.

- All internal nodes have exactly one more child than keys

- All leaves in the tree are at the same level.
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BTree Find Find(7)

J
Base Case:
7 T Bl
If root is empty, return 0(1?)
If leaf, do array find() and return B \)/7 73 VT |
-11 8 25 | 31 43 60

Recursive Step:

Array find() for match or/ﬁrst greater vall;(
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Recurse on appropriate child

Tip: Index of first greater value is index of child we want to visit!




BTree Insertion cortel

: : : : [,
Given the appropriate BTreeNode, insert is array insert
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M =

Insert (1)
Insert (2)
Insert (3)

Insert (4)
Insert (5)
Insert (6)
Insert (7)
Insert (8)



BTree Insertion

When we hit M items, split into three nodes!
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BTree Insertion M=
“Given appropriate BTreeNode” == Find()

Insert (6)
Insert (7)

- —

[2]2] 4\5\@\7\‘4\




BTree Insertion

If parent node already exists, split adds new key.
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If parent node already exists, split instead adds new key.
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BTree Insertion M =5

Problem 3: | need to find median value AFTER inserting the Mth value

‘1@‘ ‘ ‘ ‘ \ Insert (10)

|5 ‘1@‘ ‘ ‘ ‘ Insert (5)

|2 |57 ]9 ]16| 1Insert(2)
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BTree Insertion o

Problem 3: | need to find median value AFTER inserting the Mth value

(|

10 Insert (10)

|5 ‘1@‘ ‘ ‘ Insert (5)

|2 5|7 ]9f1e| 1Insert(2)

Keys
A ¢ 75 A
Non-Optimal Solution: Pre-allocate M size arrays for every node!
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BTree Recursive Insert

—_

Insert(56), M = 3

T N—

Insert always starts at a leaf but can propagate up repeatedly.
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BTree Recursive Insert

Insert(56), M = 3 @

Insert always starts at a leaf but can propagate up repeatedly.
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BTree Remove

BTree removal is complicated! It won’t be part of the lab.

If we have time at the end of the day today we will discuss it
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Nelwork patkel s V(300 bytes
BTree Node (of order m) y Gl Suc ot o s shp

Brainstorm together: What value of m should we be using?
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BTree of Order M

If | tell you this is a valid BTree, what is the lower bound of M? S
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M= 4 chlden  max

BTree Size Restrictions Ml S puoe Ky
Heys
We have max on nedes{ but do we have@Are these trees valid?
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BTree Properties

A BTrees of order m is an m-ary tree and by definition:

- All keys within a node are ordered

- All nodes contain no more than m-1 keys.

- All internal nodes have exactly one more child than keys
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Root nodes can be a leaf or have La\ , C"] children.

i} T(‘ St /'."5) ’s ,‘(f)'s
E 15
All non-root, internal nodes have L > M] children. <t
, g——

All leaves in the tree are at the same level.



BTree M>S

If | tell you this is a valid BTree, what is the precise value of m?
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BTree Analysis
Like the BST, BTree height determines the runtime of our operations!

Claim: The BTree structure limits our height to O(log, (1))
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Proof: We want to find a relationship for BTrees between the
number of keys (n) and the height (h).




BTree Analysis

Strategy:
We will first count the number of nodes, level by level. )
= -

Then, we will add the minimum number of keys per node (n).
—— %

The minimum number of nodes will tell us the largest possible
height (h/), allowing us to find an upper-bound on height.

Key Facts: NE& M
Root nodes can be a leaf or have [2,/,m] children.

All non-root, internal nodes have ] children.
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BTree Analysis  All afemal nod bove ¢ = (2} chidm

Minimum number of nodes for a BTree of order m at each level:

Root: i (L@

&) @
Level 1:  o- ¢ o0 ¢4 fL:\au,,

Level 2: 9\6

B
Level 3: -4

h-1
Levelh: ) €




BTree Analysis t=[—]

The min total number of nodes is the sum of all the levels:
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BTree Analysis o ™ =1
The min total number of nodes: 14 2t — |
r—1
The min total number of keys: Z
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BTree Analysis

The min total number of nodes: 1

The min total number of keys:

Root has how many keys? 1

m
Internal nodes? [ —| — 1 =r—1

m
Leaf nodes? [2] l=r-1

So we can multiply the fraction by  — 1
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BTree Analysis t = [%1

The smallest total number of keys is: 2th — 1 —

<

So an inequality about n, the total number of keys:
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Solving for h, since h is the max number of seek operations:
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BTree Analysis t = [51 @

The smallest total number of keys is: 2" — 1
So an inequality about n, the total number of keys:

1221 g ey codet
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n+1>2¢" m 2

log,, (n+1) 7 log,, (2 f%]h) = logm/(nif) :@

Solvi ince h is the max number of seek operations:
h = O(log,, n)




BTree Analysis

This is very powerful!

As long as | am at least minimally sized, we ar




BTree Analysis
Given m=101, a tree of height h=4 has:

Minimum Keys:

Maximum Keys:




Blree

The BTree is still used heavily today!

Improvements such as B+Tree and B*Tree exist far outside class scope




Thinking conceptually: Sorting a queue

How might we build a‘queue’in which our front element is the min?




Priority Queue Implementation

N
o(n) o(n) B B
unsorted
0(1) o(n) B | ¢ «

unsorted

o(n) o(1) & | |6 "._(r’
sorted




Priority Queue Implementation
insert JremoveMin
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Thinking conceptually: A tree without pointers

What class of (non-trivial) trees can we describe without pointers?




