
Department of Computer Science

Data Structures
BTree

October 7, 2024 CS 225
Brad Solomon


Classify: New & Improved Course Explorer

Key Features:
▪ Average GPA for each course

▪ Professor on a class page links to Rate My Professor

▪ Class locations on a class page linked to Google Maps

▪ Page that ranks Gen-Eds in a category by average GPA

▪ UI Improvements over old course explorer

▪ More features in development

Find Us:
▪ @ClassifyUIUC on Twitter & Instagram

▪ Visit: https://classify-x.vercel.app/

Feedback Survey EC
MP_stickers: ~74% participation (Great work!)

MP_lists: ~48% participation (Still time to get those points)

IEF: ~55% participation (Oh no! Deadline 10/14!)

Surveys are important! Please do them and get points!

Exam FRQ Regrade Requests
For now: Email cs225admin@lists.cs.illinois.edu

Include ‘Regrade Request’ and Exam number in subject

Write a clear explanation for why you disagree with grade

Exam 1 regrade request deadline: 10/21/24

Exam 2 regrade request deadline: TBD

mailto:cs225admin@lists.cs.illinois.edu

Learning Objectives
Remind ourselves one (engineering) issue with trees

Introduce (and implement) the B Tree!

Summary of Balanced BST
Pros: Cons:

O(log N) for insert, find, remove

Optimal range queries in 1D

O(log N) isn’t that great

Large in-memory requirement

Engineering vs Theory Efficiency
Time x1 billion Like

L1 cache reference 0.5 seconds Heartbeat 💓

Branch mispredict 5 seconds Yawn 😲

L2 cache reference 7 seconds Long yawn 😲 😲 😲

Mutex lock/unlock 25 seconds Make coffee ☕

Main memory reference 100 seconds Brush teeth

Compress 1K bytes 50 minutes TV show 📺

Send 2K bytes over 1 Gbps network 5.5 hours (Brief) Night's sleep 🛌

SSD random read 1.7 days Weekend

Read 1 MB sequentially from memory 2.9 days Long weekend

Read 1 MB sequentially from SSD 11.6 days 2 weeks for delivery 📦

Disk seek 16.5 weeks Semester

Read 1 MB sequentially from disk 7.8 months Human gestation 🐣

Above two together 1 year 🌍 ☀

Send packet CA->Netherlands->CA 4.8 years Ph.D. 🎓

(Care of https://gist.github.com/hellerbarde/2843375)

https://gist.github.com/hellerbarde/2843375

Engineering vs Theory Efficiency
In Big-O we have assumed uniform time for all operations,
but this isn’t always true.

However, seeking data from the cloud may take 40ms+.
 …an O(lg(n)) AVL tree no longer looks great:

5

3 6

4

2

8

10

9 12

111 7

Considering hardware limitations
Can we always fit our data in main memory?

Where else can we keep our data?

Does this match our assumption that all memory lookups are O(1)?

BTree Design Motivations
When large seek times become an issue, we address this by:

1) Keep the number of seeks low

BTree Design Motivations
When large seek times become an issue, we address this by:

2) When possible keep data stored locally

BTree Design Motivations
When large seek times become an issue, we address this by:

3) Make sure the data we look up is relevant!

BTree Design Motivations
When large seek times become an issue, we address this by:

1) Keep the number of seeks low

2) When possible keep data stored locally

3) Make sure the data we look up is relevant!

BTree Design Motivations
1) Keep the number of seeks low

2) When possible keep data stored locally

3) Make sure the data we look up is relevant!

Make a tree that is wide and short by…

Store more than one key in each node

Make sure our tree is still ordered

BTree
A BTree (of order m) is a m-ary tree

BTree

3

16

8

1 2 6 7 12 14

A BTree (of order m) is a m-ary tree

Nodes contain up to m-1 keys

An internal node of k keys has k+1 children

BTree

3

17

16

28 488

1 2 6 7 25 26 29 4512 14 52 53 55

A BTree (of order m) is a m-ary tree

Nodes are ordered with up to m-1 keys and |keys|+1 children

All leaves in a BTree are on the same level

BTree ADT

Constructor

Insert

Find

Delete

BTree Node (of order m)

-3 5 8 13

M 5≥

struct BTreeNode {
 std::vector<DataPair> elements;
 std::vector<BTreeNode*> children;
};

1
2
3
4

BTree Find Find(12)

9

6 7

5

10

12

11 152 3 18

BTree Find Find(7)

9

6 7

5

10

12

11 152 3 18

Base Case:

If root is empty, return

If leaf, do array find() and return

Recursive Step:

Array find() for match or first greater value

Recurse on appropriate child

Tip: Index of first greater value is index of child we want to visit!

BTree Find Find(7)

Base Case:

If root is empty, return

If leaf, do array find() and return

Recursive Step:

Array find() for match or first greater value

Recurse on appropriate child

Tip: Index of first greater value is index of child we want to visit!

-3

8

23

25 31

42

43

55

-11 60

BTree Insertion
Given an empty BTree, we make a new root node which has…

M = 5

Insert(10)

BTree Insertion
Chain insertions fill our array in sorted order

M = 5

Insert(10)

Insert(5)

Insert(7)

Insert(9)

Insert(2)

10

BTree Insertion
Problem 1: Sorted array insert is slow!

M = 5

Insert(10)

Insert(5)

Insert(2)2 5 7 9 10

5 10

10

...

BTree Insertion
Problem 1: Sorted array insert is slow!

M = 5

Insert(10)

Insert(5)

Insert(2)2 5 7 9 10

5 10

10

...

Solution: M is a constant! (So no its not)

BTree Insertion
Problem 2: A BTree of order M can only store M-1 keys!

2 5 7 9 10

M = 5

When a BTree node reaches M keys, what do we do?

BTree Insertion
Problem 2: A BTree of order M can only store M-1 keys!

2 5 7 9 10

M = 5

When a BTree node reaches M keys, what do we do?

BTree Insertion

Solution: When we hit M items, split and make a new parent node!

7

2 5 9 10 12 13

Problem 2: A BTree of order M can only store M-1 keys!

M = 5

BTree Insertion

Solution: When we hit M items, split and make a new parent node!

7 12

2 5 9 10

Problem 2: A BTree of order M can only store M-1 keys!

M = 5

13 15

BTree Insertion
Problem 3: I need to find median value AFTER inserting the Mth value

M = 5

Insert(10)

Insert(5)

Insert(2)2 5 7 9 10

5 10

10

...

BTree Insertion
Problem 3: I need to find median value AFTER inserting the Mth value

M = 5

Insert(10)

Insert(5)

Insert(2)2 5 7 9 10

5 10

10

...

Non-Optimal Solution: Pre-allocate M size arrays for every node!

BTree Recursive Insert

-3 8

23

25 31

42

43 55

M = 3

Insert always starts at a leaf but can propagate up repeatedly.

Insert(56),

BTree Remove

9

6 7

5

10

12

11 152 3 188

BTree removal is complicated! It won’t be part of the lab.

However lets consider how we would handle the following cases…

BTree Remove Remove(8)

9

6 7

5

10

12

11 152 3 188

BTree Remove Remove(2)

9

6 7

5

10

12

11 152 3 188

BTree Remove Remove(15)

9

6 7

5

10

12

11 152 3 188

BTree Remove

-3

8

23

25 31

42

43

55

-11 60

Remove(42)

BTree Remove

5

3

7

10

9

120

Remove(5)

BTree Visualization/Tool
https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html

For next time: BTree Analysis
We’ve seen the ADT

What is the runtime for our BTree operations?

-3

8

23

25 31

42

43

55

-11 60

BTree Node (of order m)
Brainstorm together: What value of m should we be using?

BTree

3

17

16

28 488

1 2 6 7 25 26 29 4512 14 52 53 55 68

If I tell you this is a valid BTree, what is the value of m?

BTree Size Restrictions

-3 8

23

25 31

42

43 55

M = 5

By definition we have max, but do we have min? Are these trees valid?

80

90

-3 8

23

25 31

42

43 55

M = 5 80

83 92

BTree Properties
A BTrees of order m is an m-ary tree and by definition:
- All keys within a node are ordered

- All leaves contain no more than m-1 keys.
- All internal nodes have exactly one more child than keys

Root nodes can be a leaf or have ___________ children.

All non-root, internal nodes have ________________ children.

All leaves in the tree are at the same level.

