
Department of Computer Science

Data Structures
KD Tree (Nearest Neighbor) 2

October  4, 2024 CS 225 
Brad Solomon





A brief reminder of academic integrity
1) Penalties are steep!

2) Homeworks are designed to teach you material!

3) I would rather give extensions than a FAIR letter



Learning Objectives
Review KD Tree Construction

Explore KD Tree Search

Go over C++ concepts for mp_mosaics



Range-based Searches

6

3 11

33

44

41 55

Consider a collection of points on a 1D line:  p = {p1, p2, …, pn}

If I want to find all values between [A, B], how could I implement this?

for(auto it = myMap.lower_bound(A); it != myMap.upper_bound(B); ++it){ 

// Do Stuff 
}

1 
2 
3 
4 
5 



Range-based Searches

p1

p2

p4

p3

p7

p5 p6

Consider points in 2D: p = {p1, p2, …, pn}

What points in rectangle [  (x1, y1),  (x2, y2)  ]?

1

3 4

2

5

7 6

X

Y

4

7 3

1

5

6 2

x-tree

y-tree (0,0)



Range-based Searches

p1

p2

p4

p3

p7

p5 p6

Consider points in 2D: p = {p1, p2, …, pn}

What is nearest point to (x1, y1)?



p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

Range-based Searches



Nearest Neighbor: k-d tree
A k-d tree is similar but splits on points:

(7,2), (5,4), (9,6), (4,7), (2,3), (8,1), (9,8)



Nearest Neighbor: k-d tree



Nearest Neighbor: k-d tree
Search by comparing query and node in single dimension



Nearest Neighbor: k-d tree
Search by comparing query and node in single dimension



Nearest Neighbor: k-d tree
Search by comparing query and node in single alternating dimension



Nearest Neighbor: k-d tree
Nearest neighbor requires backtracking



Nearest Neighbor: k-d tree
Backtracking: start recursing backwards -- store “best” possibility as 
you trace back



Nearest Neighbor: k-d tree
May have to recursively check other branches of tree — why?



Nearest Neighbor: k-d tree
May have to recursively check other branches of tree — why?



Nearest Neighbor: k-d tree
In this instance, there is no right child of (4, 7) so we continue…



Nearest Neighbor: k-d tree
Tie breaking is described in doxygen ( smallerDimVal )



Nearest Neighbor: k-d tree
We’ve hit root and have a ‘best’ match — are we done?



Nearest Neighbor: k-d tree
Why do we need to explore the right subtree?



Nearest Neighbor: k-d tree
If there was a left child of (8,1), it could have been a better match!



Nearest Neighbor: k-d tree
Having exhaustively explored for better matches, we are done!



Tips and Tricks for MP_Mosaics
1. Review, understand, and use quickselect

2. Review, understand, and use lambda functions

template <typename RandIter, typename Comparator> 
void select(RandIter start, RandIter end, RandIter k, Comparator cmp) 
{ 
    /** 
     * @todo Implement this function! 
     */     
     
  } 

1 
2 
3 
4 
5 
6 
7 
8 
9



Understanding ‘randIter’

Forward

Bidirectional

Random Access

An iterator is a container giving access in different ways:



Implementing quickselect with RandIter

Swap items using std::swap()

Random Access Iterator lets you:

template <typename RandIter, typename Comparator> 
void BlackBox(RandIter A, RandIter B) 
{ 

   std::swap(*A, *B); 

} 

1 
2 
3 
4 
5 
6 
7 
8 
9

Hint: Look at pseudo-code for quickselect!



Implementing quickselect with RandIter

Access container indices using math operations

Random Access Iterator lets you:

Get distance between two iterators

// True if A is earlier in container than B

// The distance between A and B

randIter A;

auto nth = *(A + n);

randIter A, B;

A < B;

A - B;



Implementing quickselect with RandIter

Do most things you’d expect an array to be able to do!

Random Access Iterator lets you:

The power of the Interface!

https://en.cppreference.com/w/cpp/iterator/random_access_iterator

https://en.cppreference.com/w/cpp/iterator/random_access_iterator


Tips and Tricks for MP_Mosaics
1. Review, understand, and use quickselect

2. Review, understand, and use lambda functions

template <typename RandIter, typename Comparator> 
void select(RandIter start, RandIter end, RandIter k, Comparator cmp) 
{ 
    /** 
     * @todo Implement this function! 
     */     
     
  } 

1 
2 
3 
4 
5 
6 
7 
8 
9



Consider the function from Excel 
COUNTIF(range, criteria)

Functions as arguments



template <typename Iter, typename Pred> 
int Countif(Iter begin, Iter end, Pred pred) { 
  int count = 0; 
  auto cur = begin; 

  while(cur != end) { 
    if(pred(*cur))     
      ++count; 
    ++cur; 
  } 

  return count; 
}

Countif.hpp
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22

Functions as arguments



main.cpp
bool isNegative(int num) { return (num < 0); } 

class IsNegative { 
public: 
    bool operator() (int num) { return (num < 0); } 
}; 

int main() { 
  std::vector<int> numbers = {1, 102, 105, 4, 5, 27, 41, -7, 999}; 

  auto isnegl = [](int num) { return (num < 0); }; 
  auto isnegfp = isNegative; 
  auto isnegfunctor = IsNegative(); 

  cout << "There are " << Countif(numbers.begin(), numbers.end(), _______)  
    << " negative numbers" << std::endl;

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Lambda Functions in C++
Here are several ways to write a function as an object



[Capture](Arg List){ Function Body}

Lambda Functions in C++



[Capture](Arg List){ Function Body}

Lambda Functions in C++

Capture: Takes the value of object based on when the 
lambda was defined, NOT the current value of the object!

Arg List: Standard way of inputing into a function

Function Body: Code can use both capture vars and arg vars



  int big; 
  std::cout << "How big is big? "; 
  std::cin >> big; 

  auto isbig = [big](int num) { return (num >= big); }; 

  std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)  
    << " big numbers" << std::endl; 
}

29
30
31
32 
33 
34 
35 
36 
37 
38 

main.cpp
Lambda Functions in C++



main.cpp
Lambda Functions in C++

Useful for mp_mosaics! 

KD-Tree will split points in one dimension

When comparing, we need to remember what dimension we are in!

  int big; 
  std::cout << "How big is big? "; 
  std::cin >> big; 

  auto isbig = [big](int num) { return (num >= big); }; 

  std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)  
    << " big numbers" << std::endl; 
}

29
30
31
32 
33 
34 
35 
36 
37 
38 



Tips and Tricks for MP_Mosaics
Final tips:

The mp_mosaic writeup is long. READ IT

The suggestions in the writeup should be followed carefully



Summary of Balanced BST
Pros: Cons:

O(log N) for insert, find, remove

Optimal range queries in 1D

O(log N) isn’t that great

Large in-memory requirement



Considering hardware limitations
Can we always fit our data in main memory?

Where else can we keep our data?

Does this match our assumption that all memory lookups are O(1)?



B-Tree Motivation
In Big-O we have assumed uniform time for all operations, 
but this isn’t always true. 

However, seeking data from the cloud may take 40ms+. 
   …an O(lg(n)) AVL tree no longer looks great:

5

3 6

4

2

8

10

9 12

111 7



BTree Design Motivations
When large seek times become an issue, we address this by:



BTree Design Motivations
When large seek times become an issue, we address this by:

1) Keep the number of seeks low



BTree Design Motivations
When large seek times become an issue, we address this by:

2) When possible keep data stored locally



BTree Design Motivations
When large seek times become an issue, we address this by:

3) Make sure the data we look up is relevant!



BTree Design Motivations
When large seek times become an issue, we address this by:

1) Keep the number of seeks low

2) When possible keep data stored locally

3) Make sure the data we look up is relevant!


