Data Structures

KD Tree

CS 225 October 2, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Informal Early Feedback Released!

A larger anonymous survey designed to give feedback to staff
Collective extra credit opportunity!

Studying what aspects of class are most / least helpful

Learning Objectives

Explore the need and use of range search
Introduce the KD Tree

Go over C++ concepts for mp_mosaics

Summary of Balanced BST

AVL Trees
- Max height: 1.44 * |g(n)
- Rotations:

Summary of Balanced BST

AVL Trees
- Max height: 1.44 * |g(n)
- Rotations:

Zero rotations on find
One rotation on insert
O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * Ig(n)

- Constant number of rotations on insert (max 2), remove
(max 3).

Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library:
std: :map<K, V> map;
V & std: :map<K, V>::operator[] (const K &)

std: :map<K, V>::erase(const K &)

Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library:

iterator std::map<K, V>::lower bound(const K &)

iterator std::map<K, V>::upper bound(const K &);

Summary of Balanced BST

Pros: Cons:

O(log N) for insert, find, remove O(log N) isn’t that great

Optimal range queriesin 1D Large in-memory requirement

Range-based Searches

Consider a collection of pointson a 1D line: p={p, Pys ««+r P}

If | want to find all values between [A, B], how could | implement this?

——0— @ *—O @ >
3 6 11 33 41 44 55

Range-based Searches

Consider a collection of pointson a 1D line: p={p, Pys ««+r P}

If | want to find all values between [A, B], how could | implement this?

Range-based Searches @

Consider a collection of pointson a 1D line: p={p, Pys ««+r P}

If | want to find all values between [A, B], how could | implement this?

OO (=

for (auto it = myMap.lower bound(A); it !'= myMap.upper bound(B); ++it) {

// Do Stuff
}

b WMNhR

Range-based Searches
Consider pointsin 2D: p = {p,, p,, .-, P,,}

What points in rectangle [(x;, y,), (X5, y,) 17

What is nearest point to (x,, y,)?

Range-based Searches
Consider pointsin 2D: p = {p,, p,, .-, P,,}

Tree Construction:

Range-based Searches

Pq

P

P3

Pa

Ps

Pe

Range-based Searches

-

Pq

P

P3

Py Ps

Pe

Nearest Neighbor: k-d tree

A k-d tree is similar but splits on points:

(7J2)) (534)) (9)6)J (4J7)J (2J3)) (8J1)J (9J8)

© = MWL NN E

o1l 2232 4SS b+ %9010

Nearest Neighbor: k-d tree @

(11 2)

}5:") (Q (0)

2% @7 (s 1) (q 8)

©O = MWL O NN TS

Ol 2 2 4SS pPbT+ 9 10

Nearest Neighbor: k-d tree

When querying a k-d tree, it acts like a BST* at first...

(3)2) ‘

(q)/ b :
o N 9'(’2 :
2» @EH6H @y

o1l 2232 4SS P+ %9 010

Nearest Neighbor: k-d tree

When querying a k-d tree, it acts like a BST* at first...

@2) ‘

(s u)/ h) ‘;
7N (j'(’\ ;‘
2» @»6)H Gy

Ol 2 2 4SS b+ %9 10

Nearest Neighbor: k-d tree

When querying a k-d tree, it acts like a BST* at first...

(1,2)

}51“) (‘i (0)

2% @7 (s 1) (%)

©O = MWL VO NNDDS

o1l 23 4SS pPpF 9 10

Nearest Neighbor: k-d tree

When querying a k-d tree, it acts like a BST* at first...
.. But if we dont find exact match, have to find nearest neighbor

P - N
d N o= P 2

P 2 P by) i |

” a 7\ OC ff, - | 3’\ &, fj

i AN - ST w | 4.1 N7

1 2 o R . fj i

}S:LQ (Q (o)

22 @36 u) (Ci %)

©O = MNW..L O NNDDS

Nearest Neighbor: k-d tree

Backtracking: start recursing backwards -- store “best” possibility as
you trace back

@y | |
- (S H) (4 (o) g T
Y N
(z L) qv) (s) (%) ;

Ol 2 %34S PbTt TG 10

Nearest Neighbor: k-d tree

e

(5:“') (Q (0)
2> @ (s y @)

|

ol 22 4SS o+ 99 10

g ‘\
/ \

© = MNW.L O NNDDE

Nearest Neighbor: k-d tree

On ties, use smallerDimVal to determine which point remains curBest

(1 28

}5:") (Q (0)

2,% (47> (8 1) (q %)

© = MWL O NDDE

Ol 2 %2 4SS T+t T2 10

Nearest Neighbor: k-d tree

Why do we need to explore this subtree?

(1 2

}53“) (Q (0)

2» @9 (s‘) (‘i%)

©O = MNW.L O NNDD T

ol 23 4% o+ %9 10

Nearest Neighbor: k-d tree @

?

_.I_l_

s ‘\
/ N\

©O = MNW..L O NNDDT

Ol 2 %2 4SS T+ TD 10

Tips and Tricks for MP_Mosaics

1. Review, understand, and use quickselect

template <typename RandIter, typename Comparator>
void select (RandIter start, RandIter end, RandIter k, Comparator cmp)

{

/**
* @Qtodo Implement this function!

*/

OWoJdJooUrdWNER

2. Review, understand, and use lambda functions

[Capture](Arg List){ Function Body}

Understanding ‘randlter’

An iterator is a container giving access in different ways:

Forward

Bidirectional

Random Access

Implementing quickselect with Randlter

Random Access Iterator lets you:

Swap items using std::swap()

template <typename RandIter, typename Comparator>
void BlackBox (RandIter A, RandIter B)

{

std: :swap(*A, *B);

oodJdJooUrdWNRKR

Hint: Look at pseudo-code for quickselect!

Implementing quickselect with Randlter

Random Access Iterator lets you:

Access container indices using math operations
randIter A;
auto nth = *(A + n);

Get distance between two iterators

randIter A, B;

A < B; // True if A is earlier in container than B

A - B; // The distance between A and B

Implementing quickselect with Randlter

Random Access Iterator lets you:
Do most things you'd expect an array to be able to do!

The power of the Interface!

https://en.cppreference.com/w/cpp/iterator/random_access_iterator

https://en.cppreference.com/w/cpp/iterator/random_access_iterator

Tips and Tricks for MP_Mosaics

1. Review, understand, and use quickselect

template <typename RandIter, typename Comparator>
void select (RandIter start, RandIter end, RandIter k, Comparator cmp)

{

/**
* @Qtodo Implement this function!

*/

OWoJdJooUrdWNER

2. Review, understand, and use lambda functions

[Capture](Arg List){ Function Body}

Functions as arguments

Consider the function from Excel
COUNTIF(range, criteria)

Functions as arguments

Countif.hpp

10
11
12
13
14
15
16
17
18
19
20
21
22

template <typename Iter,
int Countif (Iter begin,
int count = 0;
auto cur = begin;

while(cur '= end) {
if (pred(*cur))
++count;
++cur;

}

return count;

}

typename Pred>
Iter end, Pred pred) {

1
2
3
4
5
6
7
8
9

Lambda Functions in C++

Here are several ways to write a function as an object main.cpp

bool isNegative (int num) { return (num < 0); }

class IsNegative ({
public:
bool operator() (int num) { return (num < 0); }

};

int main () {
std: :vector<int> numbers = {1, 102, 105, 4, 5, 27, 41, -7, 999},

auto isnegl = [] (int num) { return (num < 0); };
auto isnegfp = isNegative;
auto isnegfunctor = IsNegative() ;

cout << "There are " << Countif (numbers.begin (), numbers.end(),)
<< " negative numbers" << std::endl;

Lambda Functions in C++

[Capture](Arg List){ Function Body}

Lambda Functions in C++

[Capture](Arg List){ Function Body}

Capture: Takes the value of object based on when the
lambda was defined, NOT the current value of the object!

Arg List: Standard way of inputing into a function

Function Body: Code can use both capture vars and arg vars

Lambda Functions in C++

main.cpp

29
30
31
32
33
34
35
36
37
38

int big;
std: :cout << "How big is big? ";
std: :cin >> big;

auto isbig = [big] (int num) { return (num >= big); };

std: :cout << "There are " << Countif (numbers.begin (), numbers.end(), isbig)
<< " big numbers" << std::endl;

Lambda Functions in C++ @

main.cpp

29
30
31
32
33
34
35
36
37
38

}

int big;
std: :cout << "How big is big? ";
std: :cin >> big;

auto isbig = [big] (int num) { return (num >= big); };

std: :cout << "There are " << Countif (numbers.begin (), numbers.end(), isbig)
<< " big numbers" << std::endl;

Useful for mp_mosaics!

KD-Tree will split points in one dimension

When comparing, we need to remember what dimension we are in!

Tips and Tricks for MP_Mosaics
Final tips:

The mp_mosaic writeup is long. READ IT

The suggestions in the writeup should be followed carefully

