
Department of Computer Science

Data Structures
KD Tree

October 2, 2024 CS 225
Brad Solomon

Informal Early Feedback Released!
A larger anonymous survey designed to give feedback to staff

Collective extra credit opportunity!

Studying what aspects of class are most / least helpful

Learning Objectives
Explore the need and use of range search

Introduce the KD Tree

Go over C++ concepts for mp_mosaics

Summary of Balanced BST
AVL Trees

- Max height: 1.44 * lg(n)

- Rotations:

Summary of Balanced BST
AVL Trees

- Max height: 1.44 * lg(n)

- Rotations:
 Zero rotations on find
 One rotation on insert
 O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * lg(n)

- Constant number of rotations on insert (max 2), remove
(max 3).

Red-Black Trees in C++

V & std::map<K, V>::operator[](const K &)

std::map<K, V> map;

C++ provides us a balanced BST as part of the standard library:

std::map<K, V>::erase(const K &)

Red-Black Trees in C++
C++ provides us a balanced BST as part of the standard library:

iterator std::map<K, V>::lower_bound(const K &);

iterator std::map<K, V>::upper_bound(const K &);

Summary of Balanced BST
Pros: Cons:

O(log N) for insert, find, remove

Optimal range queries in 1D

O(log N) isn’t that great

Large in-memory requirement

Range-based Searches
Consider a collection of points on a 1D line: p = {p1, p2, …, pn}

If I want to find all values between [A, B], how could I implement this?

3 6 11 33 41 44 55

Range-based Searches

6

3 11

33

44

41 55

Consider a collection of points on a 1D line: p = {p1, p2, …, pn}

If I want to find all values between [A, B], how could I implement this?

Range-based Searches

6

3 11

33

44

41 55

Consider a collection of points on a 1D line: p = {p1, p2, …, pn}

If I want to find all values between [A, B], how could I implement this?

for(auto it = myMap.lower_bound(A); it != myMap.upper_bound(B); ++it){

// Do Stuff
}

1
2
3
4
5

Range-based Searches

p1

p2

p4

p3

p7

p5 p6

Consider points in 2D: p = {p1, p2, …, pn}

What points in rectangle [(x1, y1), (x2, y2)]?

What is nearest point to (x1, y1)?

Range-based Searches

p1

p2

p4

p3

p7

p5 p6

Consider points in 2D: p = {p1, p2, …, pn}

Tree Construction:

Range-based Searches

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

Range-based Searches

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

Nearest Neighbor: k-d tree
A k-d tree is similar but splits on points:

(7,2), (5,4), (9,6), (4,7), (2,3), (8,1), (9,8)

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

… But if we dont find exact match, have to find nearest neighbor

Nearest Neighbor: k-d tree
Backtracking: start recursing backwards -- store “best” possibility as
you trace back

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree
On ties, use smallerDimVal to determine which point remains curBest

Nearest Neighbor: k-d tree
Why do we need to explore this subtree?

Nearest Neighbor: k-d tree

Tips and Tricks for MP_Mosaics
1. Review, understand, and use quickselect

2. Review, understand, and use lambda functions

template <typename RandIter, typename Comparator>
void select(RandIter start, RandIter end, RandIter k, Comparator cmp)
{
 /**
 * @todo Implement this function!
 */

 }

1
2
3
4
5
6
7
8
9

[Capture](Arg List){ Function Body}

Understanding ‘randIter’

Forward

Bidirectional

Random Access

An iterator is a container giving access in different ways:

Implementing quickselect with RandIter

Swap items using std::swap()

Random Access Iterator lets you:

template <typename RandIter, typename Comparator>
void BlackBox(RandIter A, RandIter B)
{

 std::swap(*A, *B);

}

1
2
3
4
5
6
7
8
9

Hint: Look at pseudo-code for quickselect!

Implementing quickselect with RandIter

Access container indices using math operations

Random Access Iterator lets you:

Get distance between two iterators

// True if A is earlier in container than B

// The distance between A and B

randIter A;

auto nth = *(A + n);

randIter A, B;

A < B;

A - B;

Implementing quickselect with RandIter

Do most things you’d expect an array to be able to do!

Random Access Iterator lets you:

The power of the Interface!

https://en.cppreference.com/w/cpp/iterator/random_access_iterator

https://en.cppreference.com/w/cpp/iterator/random_access_iterator

Tips and Tricks for MP_Mosaics
1. Review, understand, and use quickselect

2. Review, understand, and use lambda functions

template <typename RandIter, typename Comparator>
void select(RandIter start, RandIter end, RandIter k, Comparator cmp)
{
 /**
 * @todo Implement this function!
 */

 }

1
2
3
4
5
6
7
8
9

[Capture](Arg List){ Function Body}

Consider the function from Excel
COUNTIF(range, criteria)

Functions as arguments

template <typename Iter, typename Pred>
int Countif(Iter begin, Iter end, Pred pred) {
 int count = 0;
 auto cur = begin;

 while(cur != end) {
 if(pred(*cur))
 ++count;
 ++cur;
 }

 return count;
}

Countif.hpp
10
11
12
13
14
15
16
17
18
19
20
21
22

Functions as arguments

main.cpp
bool isNegative(int num) { return (num < 0); }

class IsNegative {
public:
 bool operator() (int num) { return (num < 0); }
};

int main() {
 std::vector<int> numbers = {1, 102, 105, 4, 5, 27, 41, -7, 999};

 auto isnegl = [](int num) { return (num < 0); };
 auto isnegfp = isNegative;
 auto isnegfunctor = IsNegative();

 cout << "There are " << Countif(numbers.begin(), numbers.end(), _______)
 << " negative numbers" << std::endl;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Lambda Functions in C++
Here are several ways to write a function as an object

[Capture](Arg List){ Function Body}

Lambda Functions in C++

[Capture](Arg List){ Function Body}

Lambda Functions in C++

Capture: Takes the value of object based on when the
lambda was defined, NOT the current value of the object!

Arg List: Standard way of inputing into a function

Function Body: Code can use both capture vars and arg vars

 int big;
 std::cout << "How big is big? ";
 std::cin >> big;

 auto isbig = [big](int num) { return (num >= big); };

 std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)
 << " big numbers" << std::endl;
}

29
30
31
32
33
34
35
36
37
38

main.cpp
Lambda Functions in C++

 int big;
 std::cout << "How big is big? ";
 std::cin >> big;

 auto isbig = [big](int num) { return (num >= big); };

 std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)
 << " big numbers" << std::endl;
}

29
30
31
32
33
34
35
36
37
38

main.cpp
Lambda Functions in C++

Useful for mp_mosaics!

KD-Tree will split points in one dimension

When comparing, we need to remember what dimension we are in!

Tips and Tricks for MP_Mosaics
Final tips:

The mp_mosaic writeup is long. READ IT

The suggestions in the writeup should be followed carefully

