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Informal Early Feedback Released!
A larger anonymous survey designed to give feedback to staff

Collective extra credit opportunity!

Studying what aspects of class are most / least helpful



Learning Objectives
Explore the need and use of range search

Introduce the KD Tree

Go over C++ concepts for mp_mosaics



Summary of Balanced BST
AVL Trees 

- Max height: 1.44 * lg(n) 

- Rotations:



Summary of Balanced BST
AVL Trees 

- Max height: 1.44 * lg(n) 

- Rotations: 
       Zero rotations on find 
       One rotation on insert 
       O(h) == O(lg(n)) rotations on remove 

Red-Black Trees 

- Max height: 2 * lg(n) 

- Constant number of rotations on insert (max 2), remove 
(max 3).



Red-Black Trees in C++

V & std::map<K, V>::operator[]( const K & )

std::map<K, V> map;

C++ provides us a balanced BST as part of the standard library:

std::map<K, V>::erase( const K & )



Red-Black Trees in C++

iterator std::map<K, V>::lower_bound( const K & );

iterator std::map<K, V>::upper_bound( const K & );

C++ provides us a balanced BST as part of the standard library:



Summary of Balanced BST
Pros: Cons:

O(log N) for insert, find, remove

Optimal range queries in 1D

O(log N) isn’t that great

Large in-memory requirement



Range-based Searches
Consider a collection of points on a 1D line:  p = {p1, p2, …, pn}

If I want to find all values between [A, B], how could I implement this?
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Range-based Searches
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Consider a collection of points on a 1D line:  p = {p1, p2, …, pn}

If I want to find all values between [A, B], how could I implement this?

for(auto it = myMap.lower_bound(A); it != myMap.upper_bound(B); ++it){ 

// Do Stuff 
}
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Range-based Searches
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Consider points in 2D: p = {p1, p2, …, pn}

What points in rectangle [  (x1, y1),  (x2, y2)  ]?



Range-based Searches
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Consider points in 2D: p = {p1, p2, …, pn}

What is nearest point to (x1, y1)?



Range-based Searches
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Consider points in 2D: p = {p1, p2, …, pn}

Tree Construction:



Range-based Searches
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Range-based Searches



Nearest Neighbor: k-d tree
A k-d tree is similar but splits on points:

(7,2), (5,4), (9,6), (4,7), (2,3), (8,1), (9,8)
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Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…
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When querying a k-d tree, it acts like a BST* at first…



Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

… But if we dont find exact match, have to find nearest neighbor



Nearest Neighbor: k-d tree
Backtracking: start recursing backwards -- store “best” possibility as 
you trace back



Nearest Neighbor: k-d tree



Nearest Neighbor: k-d tree
On ties, use smallerDimVal to determine which point remains curBest



Nearest Neighbor: k-d tree
Why do we need to explore this subtree?



Nearest Neighbor: k-d tree



Tips and Tricks for MP_Mosaics
1. Review, understand, and use quickselect

2. Review, understand, and use lambda functions

template <typename RandIter, typename Comparator> 
void select(RandIter start, RandIter end, RandIter k, Comparator cmp) 
{ 
    /** 
     * @todo Implement this function! 
     */     
     
  } 
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Understanding ‘randIter’

Forward

Bidirectional

Random Access

An iterator is a container giving access in different ways:



Implementing quickselect with RandIter

Swap items using std::swap()

Random Access Iterator lets you:

template <typename RandIter, typename Comparator> 
void BlackBox(RandIter A, RandIter B) 
{ 

   std::swap(*A, *B); 

} 
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Hint: Look at pseudo-code for quickselect!



Implementing quickselect with RandIter

Access container indices using math operations

Random Access Iterator lets you:

Get distance between two iterators

// True if A is earlier in container than B

// The distance between A and B

randIter A;

auto nth = *(A + n);

randIter A, B;

A < B;

A - B;



Implementing quickselect with RandIter

Do most things you’d expect an array to be able to do!

Random Access Iterator lets you:

The power of the Interface!

https://en.cppreference.com/w/cpp/iterator/random_access_iterator

https://en.cppreference.com/w/cpp/iterator/random_access_iterator


Tips and Tricks for MP_Mosaics
1. Review, understand, and use quickselect

2. Review, understand, and use lambda functions

template <typename RandIter, typename Comparator> 
void select(RandIter start, RandIter end, RandIter k, Comparator cmp) 
{ 
    /** 
     * @todo Implement this function! 
     */     
     
  } 
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Consider the function from Excel 
COUNTIF(range, criteria)

Functions as arguments



template <typename Iter, typename Pred> 
int Countif(Iter begin, Iter end, Pred pred) { 
  int count = 0; 
  auto cur = begin; 

  while(cur != end) { 
    if(pred(*cur))     
      ++count; 
    ++cur; 
  } 

  return count; 
}

Countif.hpp
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Functions as arguments



main.cpp
bool isNegative(int num) { return (num < 0); } 

class IsNegative { 
public: 
    bool operator() (int num) { return (num < 0); } 
}; 

int main() { 
  std::vector<int> numbers = {1, 102, 105, 4, 5, 27, 41, -7, 999}; 

  auto isnegl = [](int num) { return (num < 0); }; 
  auto isnegfp = isNegative; 
  auto isnegfunctor = IsNegative(); 

  cout << "There are " << Countif(numbers.begin(), numbers.end(), _______)  
    << " negative numbers" << std::endl;
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Lambda Functions in C++
Here are several ways to write a function as an object



[Capture](Arg List){ Function Body}

Lambda Functions in C++



[Capture](Arg List){ Function Body}

Lambda Functions in C++

Capture: Takes the value of object based on when the 
lambda was defined, NOT the current value of the object!

Arg List: Standard way of inputing into a function

Function Body: Code can use both capture vars and arg vars



  int big; 
  std::cout << "How big is big? "; 
  std::cin >> big; 

  auto isbig = [big](int num) { return (num >= big); }; 

  std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)  
    << " big numbers" << std::endl; 
}
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main.cpp
Lambda Functions in C++

Useful for mp_mosaics! 

KD-Tree will split points in one dimension

When comparing, we need to remember what dimension we are in!

  int big; 
  std::cout << "How big is big? "; 
  std::cin >> big; 

  auto isbig = [big](int num) { return (num >= big); }; 

  std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)  
    << " big numbers" << std::endl; 
}
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Tips and Tricks for MP_Mosaics
Final tips:

The mp_mosaic writeup is long. READ IT

The suggestions in the writeup should be followed carefully


