
Department of Computer Science

Data Structures
KD Tree

October 2, 2024 CS 225
Brad Solomon

Informal Early Feedback Released!
A larger anonymous survey designed to give feedback to staff

Collective extra credit opportunity!

Studying what aspects of class are most / least helpful

Learning Objectives
Explore the need and use of range search

Introduce the KD Tree

Go over C++ concepts for mp_mosaics

Summary of Balanced BST
AVL Trees

- Max height: 1.44 * lg(n)

- Rotations:

Summary of Balanced BST
AVL Trees

- Max height: 1.44 * lg(n)

- Rotations:
 Zero rotations on find
 One rotation on insert
 O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * lg(n)

- Constant number of rotations on insert (max 2), remove
(max 3).

Red-Black Trees in C++

V & std::map<K, V>::operator[](const K &)

std::map<K, V> map;

C++ provides us a balanced BST as part of the standard library:

std::map<K, V>::erase(const K &)

Red-Black Trees in C++

iterator std::map<K, V>::lower_bound(const K &);

iterator std::map<K, V>::upper_bound(const K &);

C++ provides us a balanced BST as part of the standard library:

Summary of Balanced BST
Pros: Cons:

O(log N) for insert, find, remove

Optimal range queries in 1D

O(log N) isn’t that great

Large in-memory requirement

Range-based Searches
Consider a collection of points on a 1D line: p = {p1, p2, …, pn}

If I want to find all values between [A, B], how could I implement this?

3 6 11 33 41 44 55

Range-based Searches

6

3 11

33

44

41 55

Consider a collection of points on a 1D line: p = {p1, p2, …, pn}

If I want to find all values between [A, B], how could I implement this?

Range-based Searches

6

3 11

33

44

41 55

Consider a collection of points on a 1D line: p = {p1, p2, …, pn}

If I want to find all values between [A, B], how could I implement this?

for(auto it = myMap.lower_bound(A); it != myMap.upper_bound(B); ++it){

// Do Stuff
}

1
2
3
4
5

Range-based Searches

p1

p2

p4

p3

p7

p5 p6

Consider points in 2D: p = {p1, p2, …, pn}

What points in rectangle [(x1, y1), (x2, y2)]?

Range-based Searches

p1

p2

p4

p3

p7

p5 p6

Consider points in 2D: p = {p1, p2, …, pn}

What is nearest point to (x1, y1)?

Range-based Searches

p1

p2

p4

p3

p7

p5 p6

Consider points in 2D: p = {p1, p2, …, pn}

Tree Construction:

Range-based Searches

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

Range-based Searches

Nearest Neighbor: k-d tree
A k-d tree is similar but splits on points:

(7,2), (5,4), (9,6), (4,7), (2,3), (8,1), (9,8)

Nearest Neighbor: k-d tree
A k-d tree is similar but splits on points:

(7,2), (5,4), (9,6), (4,7), (2,3), (8,1), (9,8)

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

… But if we dont find exact match, have to find nearest neighbor

Nearest Neighbor: k-d tree
Backtracking: start recursing backwards -- store “best” possibility as
you trace back

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree
On ties, use smallerDimVal to determine which point remains curBest

Nearest Neighbor: k-d tree
Why do we need to explore this subtree?

Nearest Neighbor: k-d tree

Tips and Tricks for MP_Mosaics
1. Review, understand, and use quickselect

2. Review, understand, and use lambda functions

template <typename RandIter, typename Comparator>
void select(RandIter start, RandIter end, RandIter k, Comparator cmp)
{
 /**
 * @todo Implement this function!
 */

 }

1
2
3
4
5
6
7
8
9

Understanding ‘randIter’

Forward

Bidirectional

Random Access

An iterator is a container giving access in different ways:

Implementing quickselect with RandIter

Swap items using std::swap()

Random Access Iterator lets you:

template <typename RandIter, typename Comparator>
void BlackBox(RandIter A, RandIter B)
{

 std::swap(*A, *B);

}

1
2
3
4
5
6
7
8
9

Hint: Look at pseudo-code for quickselect!

Implementing quickselect with RandIter

Access container indices using math operations

Random Access Iterator lets you:

Get distance between two iterators

// True if A is earlier in container than B

// The distance between A and B

randIter A;

auto nth = *(A + n);

randIter A, B;

A < B;

A - B;

Implementing quickselect with RandIter

Do most things you’d expect an array to be able to do!

Random Access Iterator lets you:

The power of the Interface!

https://en.cppreference.com/w/cpp/iterator/random_access_iterator

https://en.cppreference.com/w/cpp/iterator/random_access_iterator

Tips and Tricks for MP_Mosaics
1. Review, understand, and use quickselect

2. Review, understand, and use lambda functions

template <typename RandIter, typename Comparator>
void select(RandIter start, RandIter end, RandIter k, Comparator cmp)
{
 /**
 * @todo Implement this function!
 */

 }

1
2
3
4
5
6
7
8
9

Consider the function from Excel
COUNTIF(range, criteria)

Functions as arguments

template <typename Iter, typename Pred>
int Countif(Iter begin, Iter end, Pred pred) {
 int count = 0;
 auto cur = begin;

 while(cur != end) {
 if(pred(*cur))
 ++count;
 ++cur;
 }

 return count;
}

Countif.hpp
10
11
12
13
14
15
16
17
18
19
20
21
22

Functions as arguments

main.cpp
bool isNegative(int num) { return (num < 0); }

class IsNegative {
public:
 bool operator() (int num) { return (num < 0); }
};

int main() {
 std::vector<int> numbers = {1, 102, 105, 4, 5, 27, 41, -7, 999};

 auto isnegl = [](int num) { return (num < 0); };
 auto isnegfp = isNegative;
 auto isnegfunctor = IsNegative();

 cout << "There are " << Countif(numbers.begin(), numbers.end(), _______)
 << " negative numbers" << std::endl;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Lambda Functions in C++
Here are several ways to write a function as an object

[Capture](Arg List){ Function Body}

Lambda Functions in C++

[Capture](Arg List){ Function Body}

Lambda Functions in C++

Capture: Takes the value of object based on when the
lambda was defined, NOT the current value of the object!

Arg List: Standard way of inputing into a function

Function Body: Code can use both capture vars and arg vars

 int big;
 std::cout << "How big is big? ";
 std::cin >> big;

 auto isbig = [big](int num) { return (num >= big); };

 std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)
 << " big numbers" << std::endl;
}

29
30
31
32
33
34
35
36
37
38

main.cpp
Lambda Functions in C++

main.cpp
Lambda Functions in C++

Useful for mp_mosaics!

KD-Tree will split points in one dimension

When comparing, we need to remember what dimension we are in!

 int big;
 std::cout << "How big is big? ";
 std::cin >> big;

 auto isbig = [big](int num) { return (num >= big); };

 std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)
 << " big numbers" << std::endl;
}

29
30
31
32
33
34
35
36
37
38

Tips and Tricks for MP_Mosaics
Final tips:

The mp_mosaic writeup is long. READ IT

The suggestions in the writeup should be followed carefully

