Data Structures AVL Analysis

CS 225 Brad Solomon September 30, 2024

No MP this week!

We will cover content necessary for mp_mosaics this week

An opportunity to catch up on work

An opportunity to complete the Informal Early Feedback

Learning Objectives

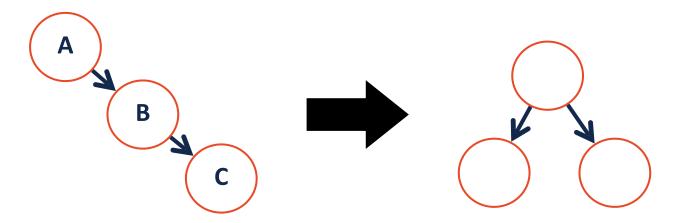
Review AVL trees

Prove that the AVL Tree speeds up all operations

AVL Rotations

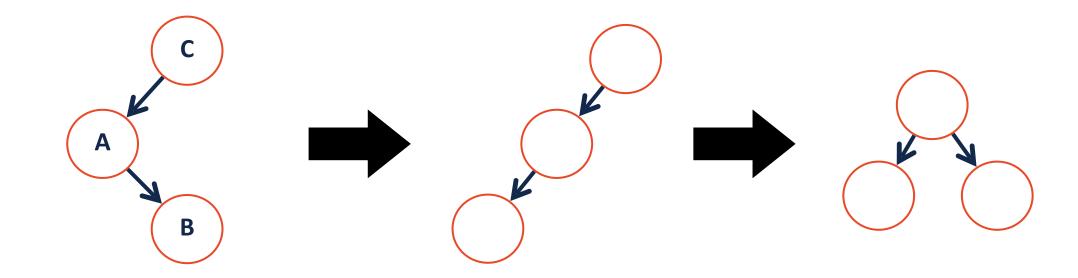
Right **RightLeft** Left LeftRight Root Balance: Child Balance:

AVL Tree Rotations



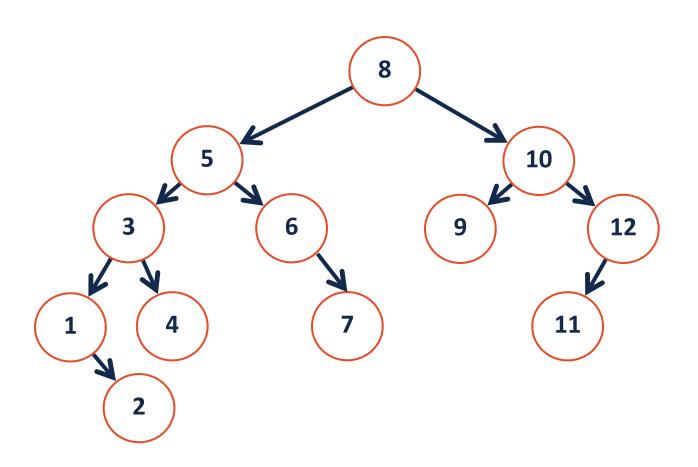
All rotations are O(1)

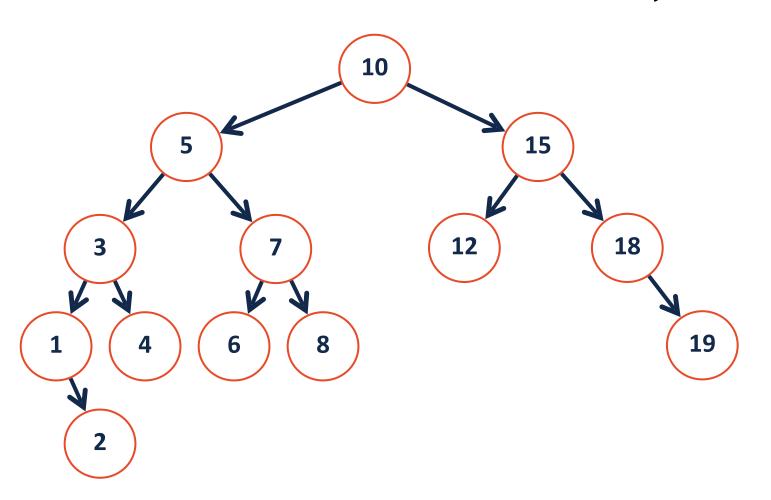
All rotations reduce subtree height by one

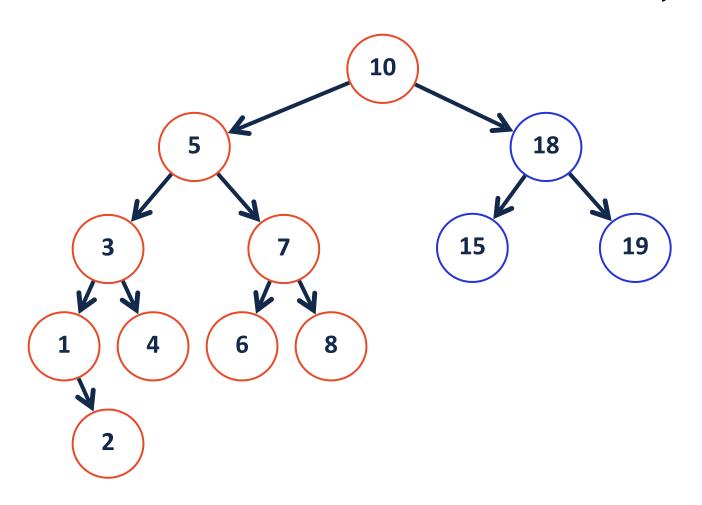


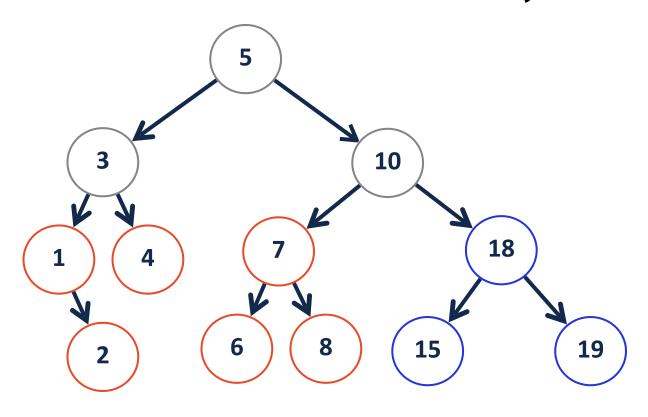
AVL Insertion

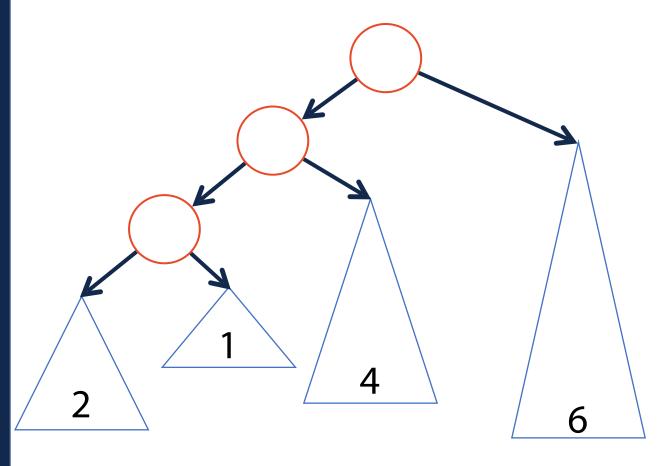
Given an AVL is balanced, insert can insert at most one imbalance

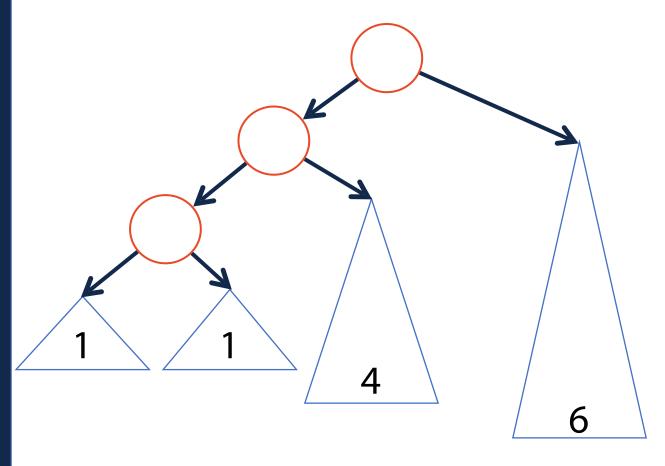


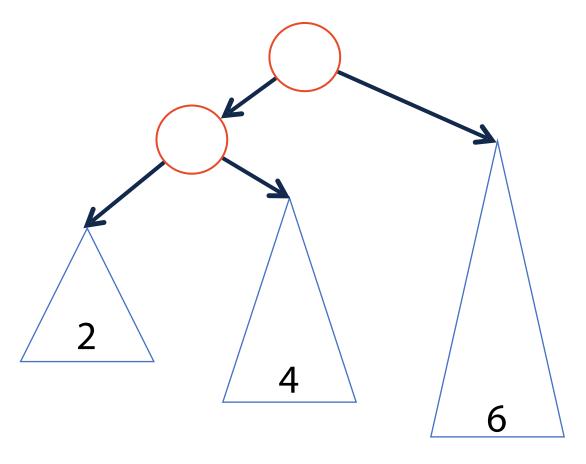




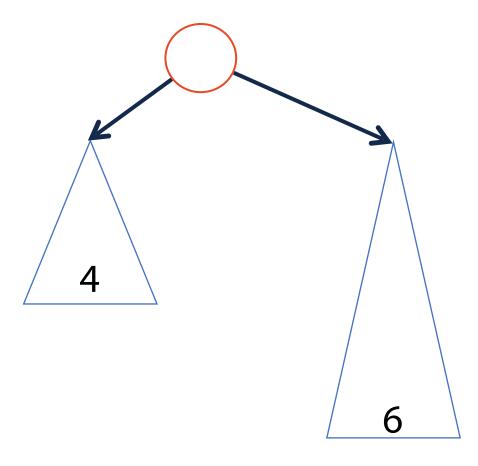


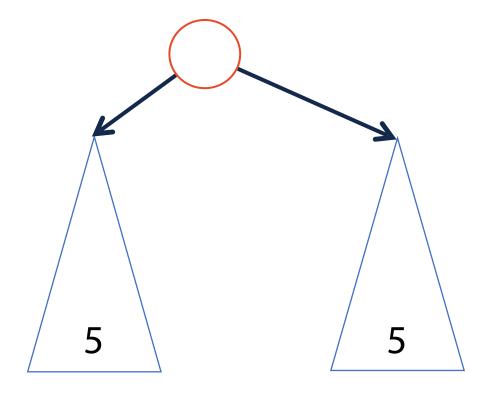












For an AVL tree of height h:

Find runs in: _____.

Insert runs in: ______.

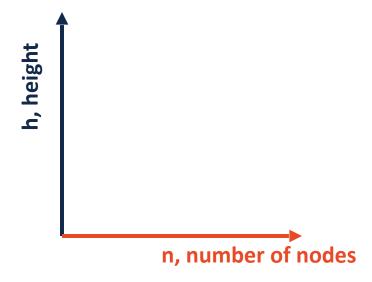
Remove runs in: ______.

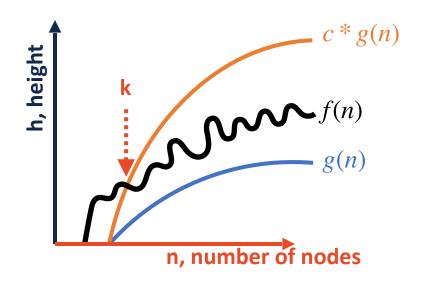
Claim: The height of the AVL tree with n nodes is: ______.

Definition of big-O:

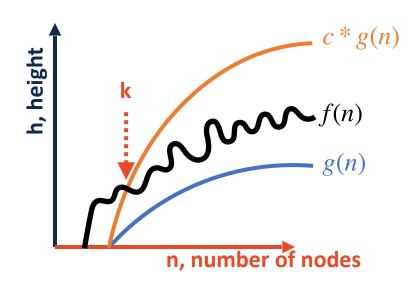
$$f(n)$$
 is $O(g(n))$ iff $\exists c, k \text{ s.t.} f(n) \le cg(n) \ \forall n > k$

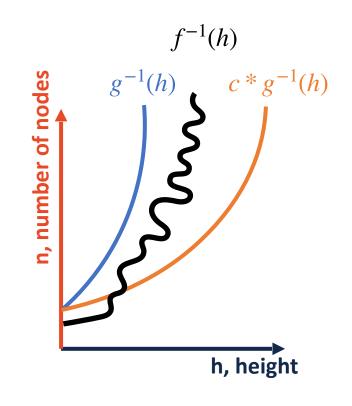
...or, with pictures:





The height of the tree, f(n), will always be <u>less than</u> $c \times g(n)$ for all values where n > k.





 $f^{-1}(h)$ = "Nodes in tree given height"

The number of nodes in the tree, $f^{-1}(h)$, will always be greater than $c \times g^{-1}(h)$ for all values where n > k.

Plan of Action

Since our goal is to find the lower bound on **n** given **h**, we can begin by defining a function given **h** which describes the smallest number of nodes in an AVL tree of height **h**:

N(h) = minimum number of nodes in an AVL tree of height h

$$N(h) = 1 + N(h - 1) + N(h - 2)$$

$$N(h) = 1 + N(h-1) + N(h-2)$$

$$N(h) > N(h-1) + N(h-2)$$

$$N(h) = 1 + N(h-1) + N(h-2)$$

$$N(h) > N(h-1) + N(h-2)$$

$$N(h) > 2N(h-2)$$

$$N(h) = 1 + N(h-1) + N(h-2)$$

$$N(h) > N(h-1) + N(h-2)$$

$$N(h) > 2N(h-2)$$

1) Know characteristic equation? Get answer immediately!

$$N(h) = 1 + N(h-1) + N(h-2)$$

$$N(h) > N(h-1) + N(h-2)$$

$$N(h) > 2N(h-2)$$

2) Unroll:
$$N(h) > 2N(h-2) = 2(2(N(h-4))) = 2^k(N(h-2k))$$

$$N(h) = 1 + N(h - 1) + N(h - 2)$$

$$N(h) > N(h-1) + N(h-2)$$

$$N(h) > 2N(h-2)$$

2) Unroll:
$$N(h) > 2N(h-2) = 2(2(N(h-4))) = 2^k(N(h-2k))$$

When
$$h - 2k = 0$$
, $k = h/2$. Thus $N(h) > 2^{h/2}$

$$N(h) = 1 + N(h-1) + N(h-2)$$

$$N(h) > N(h-1) + N(h-2)$$

$$N(h) > 2N(h-2)$$

3) Intuit approximate shape from recursion

$$N(h) = 1 + N(h-1) + N(h-2)$$

$$N(h) > N(h-1) + N(h-2)$$

$$N(h) > 2N(h-2)$$

By whatever strategy you like: $N(h) > 2^{h/2}$

State a Theorem

Theorem: An AVL tree of height h has at least $N(h) > 2^{h/2}$.

Proof by Induction:

- I. Consider an AVL tree and let h denote its height.
- II. Base Case: _____

An AVL tree of height ____ has at least ____ nodes.

III. Base Case: _____

An AVL tree of height ____ has at least ____ nodes.

IV. Induction Step: Assume for all heights $i < h, N(i) \ge 2^{i/2}$.

Prove that $N(h) \ge 2^{h/2}$

IV. Induction Step: Assume for all heights $i < h, N(i) \ge 2^{i/2}$.

Prove that $N(h) \ge 2^{h/2}$

$$N(h) = 1 + N(h - 1) + N(h - 2)$$

$$N(h) > 2N(h-2)$$

$$N(h) > 2 * 2^{(h-2)/2}$$

$$N(h) > 2 * 2^{h/2-1}$$

$$N(h) > 2^{h/2}$$

V. Using a proof by induction, we have shown that:

V. Using a proof by induction, we have shown that:

 $N(h) \ge 2^{h/2}$, where N(h) is the min # of nodes of a tree of height h

But we need to know n, the # of nodes in any tree of height h

V. Using a proof by induction, we have shown that:

$$N(h) \ge 2^{h/2}$$
, where $N(h)$ is the min # of nodes of a tree of height h

But we need to know n, the # of nodes in any tree of height h

$$n \ge N(h)$$

$$log(n) \ge \frac{h}{2}$$

$$h \leq 2 \log(n)$$

AVL Runtime Proof

An upper-bound on the height of an AVL tree is O(lg(n)):

```
N(h) := Minimum # of nodes in an AVL tree of height h

N(h) = 1 + N(h-1) + N(h-2)

> 1 + 2(h-1)/2 + 2(h-2)/2

> 2 \times 2(h-2)/2 = 2(h-2)/2+1 = 2h/2
```

Theorem #1:

Every AVL tree of height h has at least 2h/2 nodes.

AVL Runtime Proof

An upper-bound on the height of an AVL tree is O(lg(n)):

```
# of nodes (n) \geq N(h) > 2^{h/2}

n > 2^{h/2}

lg(n) > h/2

2 \times lg(n) > h

h < 2 \times lg(n) , for h \geq 1
```

Proved: The maximum number of nodes in an AVL tree of height h is less than $2 \times lg(n)$.

Summary of Balanced BST

Pros: Cons:

Every Data Structure So Far

	Unsorted Array	Sorted Array	Sorted Linked List	Binary Tree	BST	AVL
Find						
Insert						
Remove						
Traverse						