
Department of Computer Science

Data Structures
AVL Analysis

September 30, 2024 CS 225
Brad Solomon

No MP this week!

An opportunity to catch up on work

We will cover content necessary for mp_mosaics this week

An opportunity to complete the Informal Early Feedback

Learning Objectives

Prove that the AVL Tree speeds up all operations

Review AVL trees

AVL Rotations
Left Right LeftRight RightLeft

Root Balance:

Child Balance:

2

1

-2

-1

-2

1

2

-1

AVL Tree Rotations
A

B

C

A

B

C

All rotations are O(1)

All rotations reduce
subtree height by one

AVL Insertion
Given an AVL is balanced, insert can insert at most one imbalance

5

3 6

4

2

8

10

9 12

111 7

AVL Remove
Remove can cause an imbalance at every level

5

3 7

4 6

10

15

12 18

191 8

2

_remove(12)

AVL Remove
Remove can cause an imbalance at every level

5

3 7

4 6

10

18

15 19

1 8

2

_remove(12)

AVL Remove
Remove can cause an imbalance at every level

5

3

74

6

10

18

15 19

1

82

_remove(12)

AVL Remove
Remove can cause an imbalance at every level

2
1

4
6

AVL Remove
Remove can cause an imbalance at every level

1 1
4

6

AVL Remove
Remove can cause an imbalance at every level

4
6

2

AVL Remove
Remove can cause an imbalance at every level

3

6

3

AVL Remove
Remove can cause an imbalance at every level

4

6

AVL Remove
Remove can cause an imbalance at every level

5 5

AVL Tree Analysis

For an AVL tree of height h:

Find runs in: __________.

Insert runs in: __________.

Remove runs in: __________.

Claim: The height of the AVL tree with n nodes is: __________.

AVL Tree Analysis
Definition of big-O:

…or, with pictures:

n, number of nodes

h,
 h

ei
gh

t
 is iff s.t. f(n) O(g(n)) ∃c, k f(n) ≤ cg(n) ∀n > k

n, number of nodes

h,
 h

ei
gh

t c * g(n)

g(n)

f (n)
k

The height of the tree, f(n), will always be less than
c × g(n) for all values where n > k.

AVL Tree Analysis

AVL Tree Analysis

n, number of nodes

h,
 h

ei
gh

t

n,
 n

um
be

r o
f n

od
es

h, height

c * g(n)

g(n)

f (n)
k

The number of nodes in the tree, f-1(h), will always
be greater than c × g-1(h) for all values where n > k.

g−1(h) c * g−1(h)

f −1(h)

 = “Tree height given nodes”f(n) = “Nodes in tree given height”f −1(h)

Plan of Action

 = minimum number of nodes in an AVL tree of height N(h) h

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes the
smallest number of nodes in an AVL tree of height h:

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)
1) Know characteristic equation? Get answer immediately!

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

2) Unroll: N(h) > 2N(h − 2) = 2 (2(N(h − 4)) = 2k (N(h − 2k))

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

2) Unroll: N(h) > 2N(h − 2) = 2 (2(N(h − 4)) = 2k (N(h − 2k))
When , . Thus h − 2k = 0 k = h/2 N(h) > 2h/2

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)
3) Intuit approximate shape from recursion

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

By whatever strategy you like: N(h) > 2h/2

State a Theorem

An AVL tree of height ____ has at least ____ nodes.

Theorem: An AVL tree of height h has at least .

Proof by Induction:

I. Consider an AVL tree and let h denote its height.

II. Base Case: ______________

N(h) > 2h/2

Prove a Theorem

An AVL tree of height ____ has at least ____ nodes.

III. Base Case: ______________

Prove a Theorem
IV. Induction Step: Assume for all heights , . i < h N(i) ≥ 2i/2

Prove that N(h) ≥ 2h/2

Prove a Theorem
IV. Induction Step: Assume for all heights , . i < h N(i) ≥ 2i/2

Prove that N(h) ≥ 2h/2

N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

N(h) > 2 * 2(h−2)/2

N(h) > 2 * 2h/2−1

N(h) > 2h/2

Prove a Theorem
V. Using a proof by induction, we have shown that:

Prove a Theorem

, where is the min # of nodes of a tree of height hN(h) ≥ 2h/2 N(h)
V. Using a proof by induction, we have shown that:

But we need to know , the # of nodes in any tree of height hn

Prove a Theorem

, where is the min # of nodes of a tree of height hN(h) ≥ 2h/2 N(h)

n ≥ N(h)

V. Using a proof by induction, we have shown that:

But we need to know , the # of nodes in any tree of height hn

log(n) ≥
h
2

h ≤ 2 log(n)

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(lg(n)):

 N(h) := Minimum # of nodes in an AVL tree of height h
 N(h) = 1 + N(h-1) + N(h-2)

 > 1 + 2(h-1)/2 + 2(h-2)/2

 > 2 × 2(h-2)/2 = 2(h-2)/2+1 = 2h/2

 Theorem #1:

 Every AVL tree of height h has at least 2h/2 nodes.

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(lg(n)):

 # of nodes (n) ≥ N(h) > 2h/2

 n > 2h/2
 lg(n) > h/2

 2 × lg(n) > h

 h < 2 × lg(n) , for h ≥ 1

Proved: The maximum number of nodes in an AVL tree of
height h is less than 2 × lg(n).

Summary of Balanced BST
Pros: Cons:

Cache Locality / Memory Management

Every Data Structure So Far
Unsorted
Array

Sorted Array Unsorted
Linked List

Sorted
Linked List

Binary Tree BST AVL

Find

Insert

Remove

Traverse

