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No MP this week!

An opportunity to catch up on work

We will cover content necessary for mp_mosaics this week

An opportunity to complete the Informal Early Feedback



Learning Objectives

Prove that the AVL Tree speeds up all operations

Review AVL trees



AVL Rotations
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AVL Tree Rotations
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All rotations are O(1)

All rotations reduce 
subtree height by one



AVL Insertion
Given an AVL is balanced, insert can insert at most one imbalance
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level

4

6



AVL Remove
Remove can cause an imbalance at every level
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AVL Tree Analysis

For an AVL tree of height h: 

Find runs in: __________.

Insert runs in: __________.

Remove runs in: __________.

Claim: The height of the AVL tree with n nodes is: __________.



AVL Tree Analysis
Definition of big-O: 

…or, with pictures:

n, number of nodes
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n, number of nodes
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The height of the tree, f(n), will always be less than 
c × g(n) for all values where n > k.

AVL Tree Analysis



AVL Tree Analysis

n, number of nodes
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h, height

c * g(n)

g(n)

f (n)
k

The number of nodes in the tree, f-1(h), will always 
be greater than c × g-1(h) for all values where n > k.

g−1(h) c * g−1(h)

f −1(h)

 = “Tree height given nodes”f(n)  = “Nodes in tree given height”f −1(h)



Plan of Action

    = minimum number of nodes in an AVL tree of height N(h) h

Since our goal is to find the lower bound on n given h, we 
can begin by defining a function given h which describes the 
smallest number of nodes in an AVL tree of height h:



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)
1) Know characteristic equation? Get answer immediately!



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

2) Unroll: N(h) > 2N(h − 2) = 2 (2(N(h − 4)) = 2k (N(h − 2k))



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

2) Unroll: N(h) > 2N(h − 2) = 2 (2(N(h − 4)) = 2k (N(h − 2k))
When , . Thus h − 2k = 0 k = h/2 N(h) > 2h/2



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)
3) Intuit approximate shape from recursion



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

By whatever strategy you like: N(h) > 2h/2



State a Theorem

An AVL tree of height ____ has at least ____ nodes.  

Theorem: An AVL tree of height h has at least . 

Proof by Induction: 

I. Consider an AVL tree and let h denote its height. 

II. Base Case: ______________ 

N(h) > 2h/2



Prove a Theorem

An AVL tree of height ____ has at least ____ nodes.  

III. Base Case: ______________



Prove a Theorem
IV. Induction Step: Assume for all heights , . i < h N(i) ≥ 2i/2

Prove that N(h) ≥ 2h/2



Prove a Theorem
IV. Induction Step: Assume for all heights , . i < h N(i) ≥ 2i/2

Prove that N(h) ≥ 2h/2

N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

N(h) > 2 * 2(h−2)/2

N(h) > 2 * 2h/2−1

N(h) > 2h/2



Prove a Theorem
V. Using a proof by induction, we have shown that:



Prove a Theorem

, where  is the min # of nodes of a tree of height hN(h) ≥ 2h/2 N(h)
V. Using a proof by induction, we have shown that:

But we need to know , the # of nodes in any tree of height hn



Prove a Theorem

, where  is the min # of nodes of a tree of height hN(h) ≥ 2h/2 N(h)

n ≥ N(h)

V. Using a proof by induction, we have shown that:

But we need to know , the # of nodes in any tree of height hn

log(n) ≥
h
2

h ≤ 2 log(n)



AVL Runtime Proof
An upper-bound on the height of an AVL tree is O( lg(n) ): 

    N(h) := Minimum # of nodes in an AVL tree of height h  
    N(h) = 1 + N(h-1) + N(h-2) 

                 > 1 + 2(h-1)/2 + 2(h-2)/2 

                 > 2 × 2(h-2)/2 = 2(h-2)/2+1 = 2h/2 

   Theorem #1: 

       Every AVL tree of height h has at least 2h/2 nodes.



AVL Runtime Proof
An upper-bound on the height of an AVL tree is O( lg(n) ): 

    # of nodes (n) ≥ N(h) > 2h/2 

    n > 2h/2 
    lg(n) > h/2 

    2 × lg(n) > h 

    h < 2 × lg(n)                 , for h ≥ 1 

Proved: The maximum number of nodes in an AVL tree of 
height h is less than 2 × lg(n).



Summary of Balanced BST
Pros: Cons:



Cache Locality / Memory Management



Every Data Structure So Far
Unsorted 
Array

Sorted Array Unsorted 
Linked List

Sorted 
Linked List

Binary Tree BST AVL

Find

Insert

Remove

Traverse


