Data Structures AVL Analysis

CS 225 Brad Solomon September 30, 2024

Department of Computer Science

No MP this week!

We will cover content necessary for mp_mosaics this week

An opportunity to catch up on work —

57 hours

An opportunity to complete the Informal Early Feedback

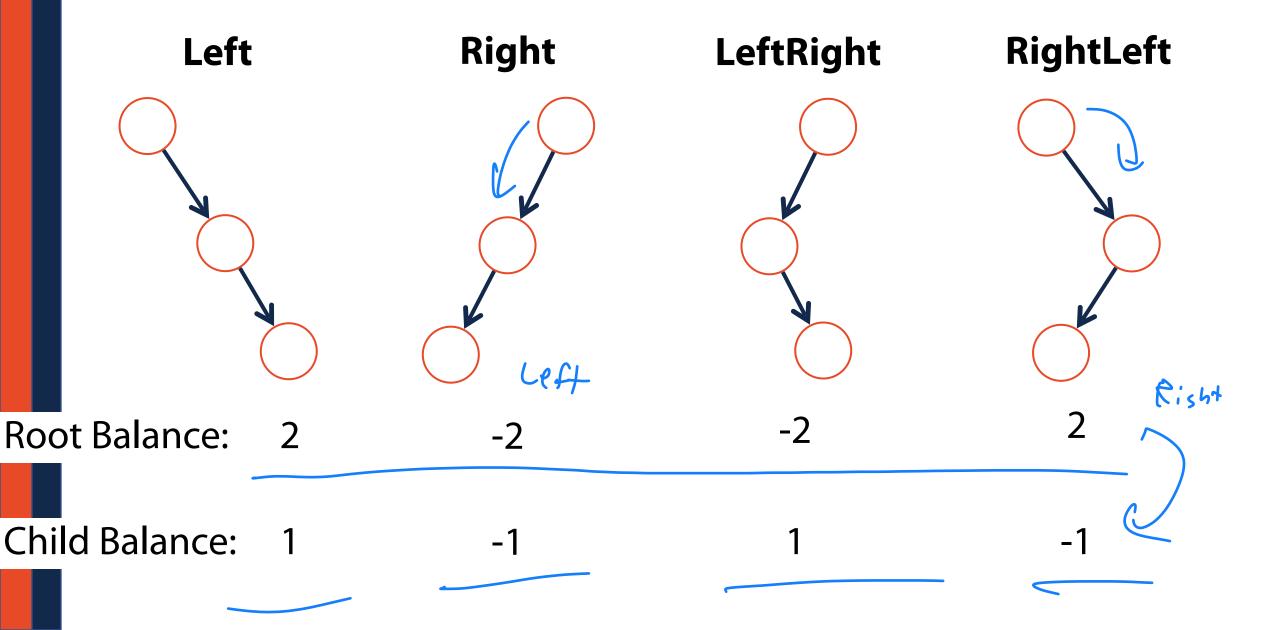
4 +8 Er

Learning Objectives

Review AVL trees

Prove that the AVL Tree speeds up all operations

AVL Rotations

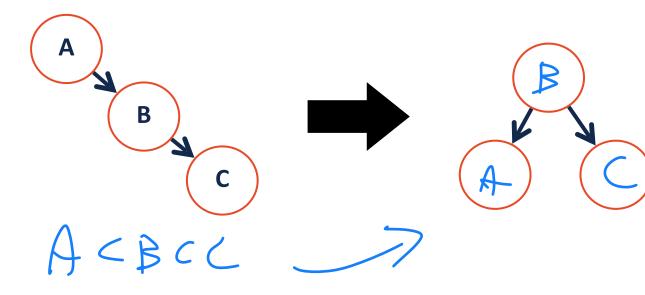


AVL Tree Rotations

C

Β

Α



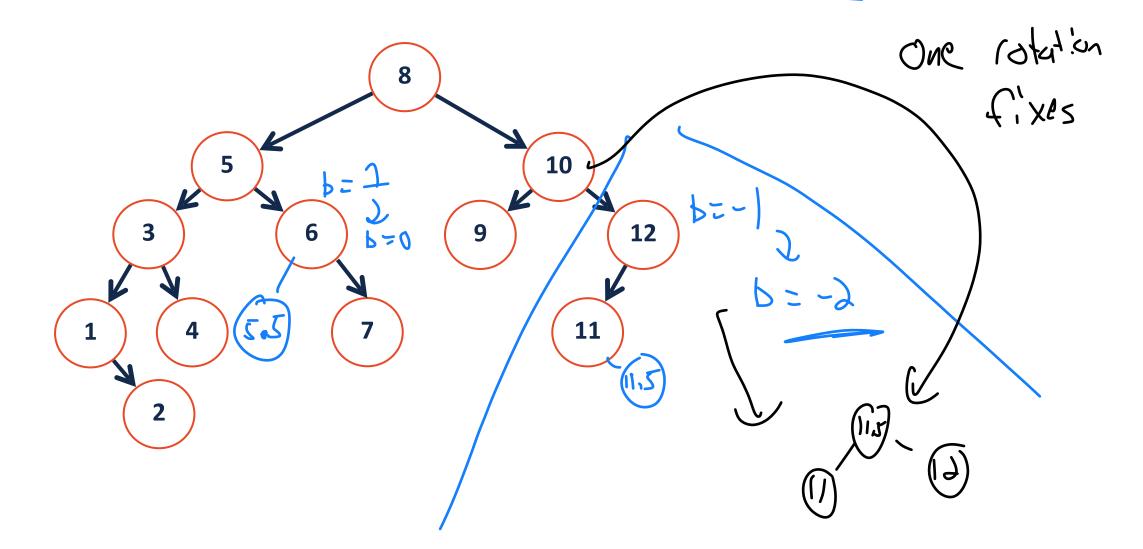
Д

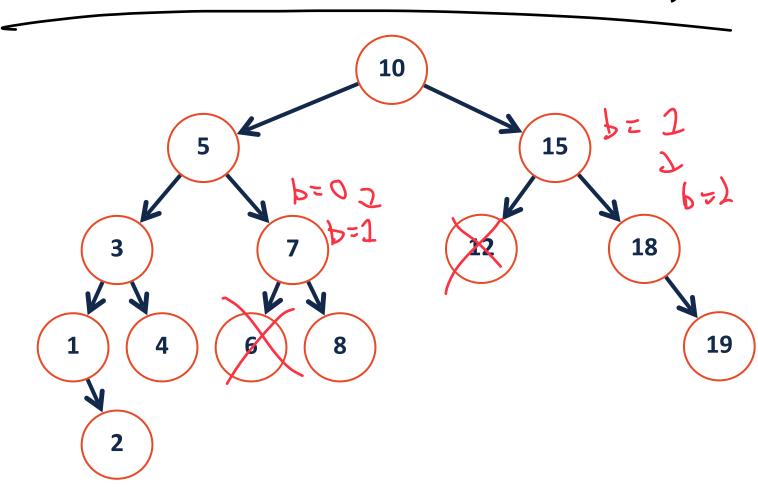
All rotations are O(1)

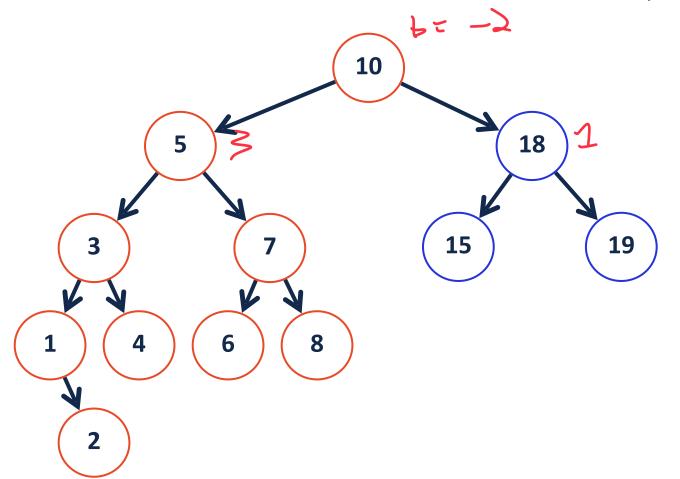
All rotations reduce subtree height by one

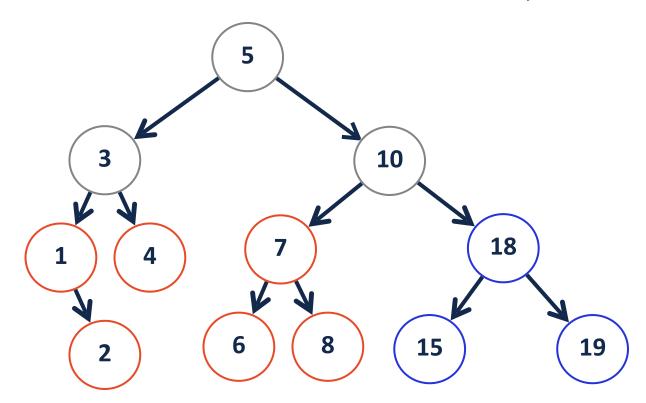
AVL Insertion

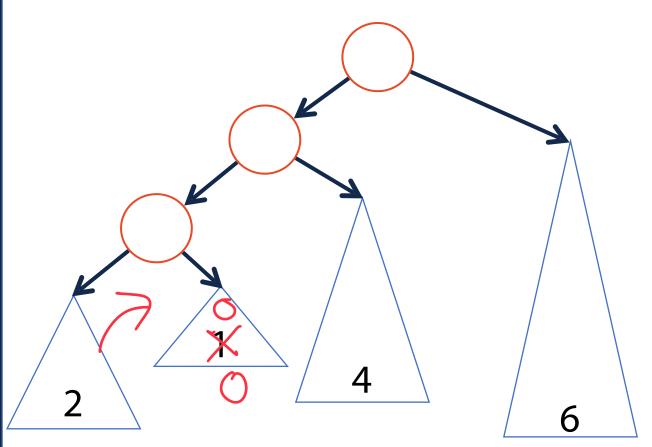
Given an AVL is balanced, insert can insert **at most** one imbalance

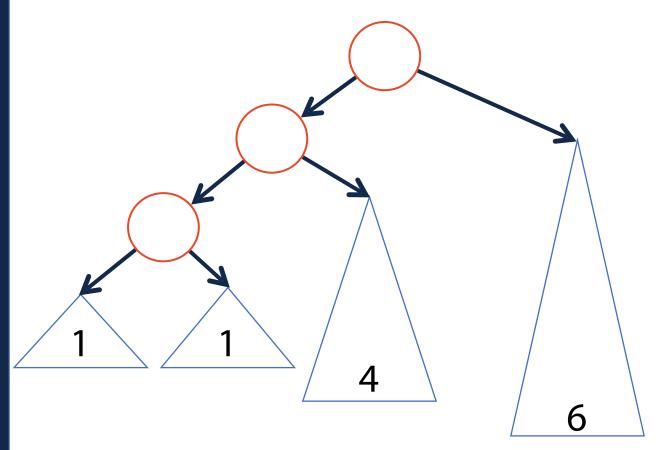


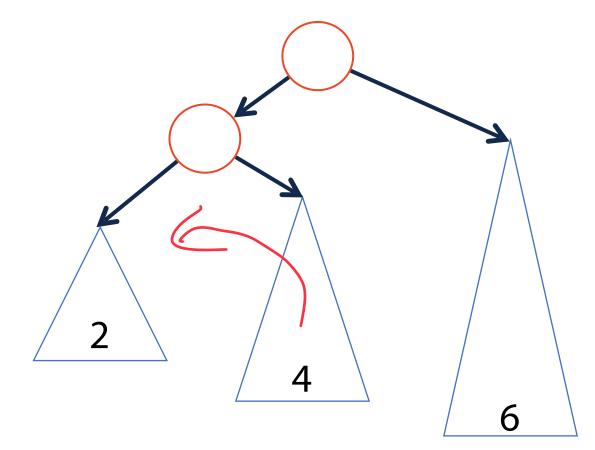


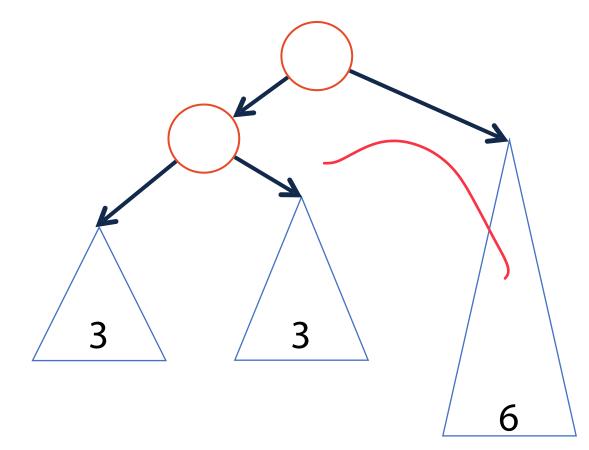


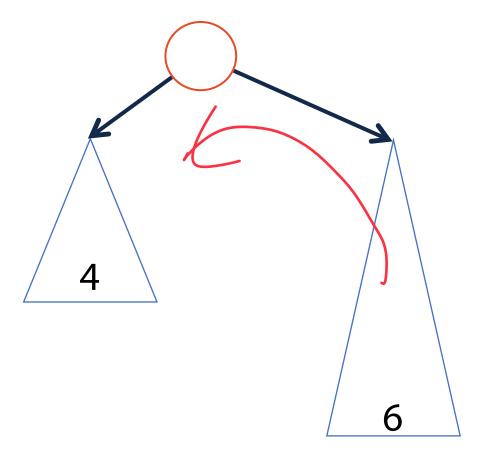


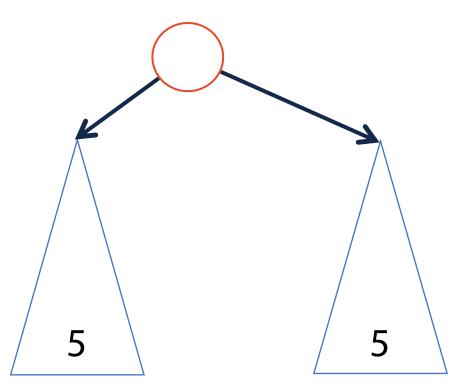


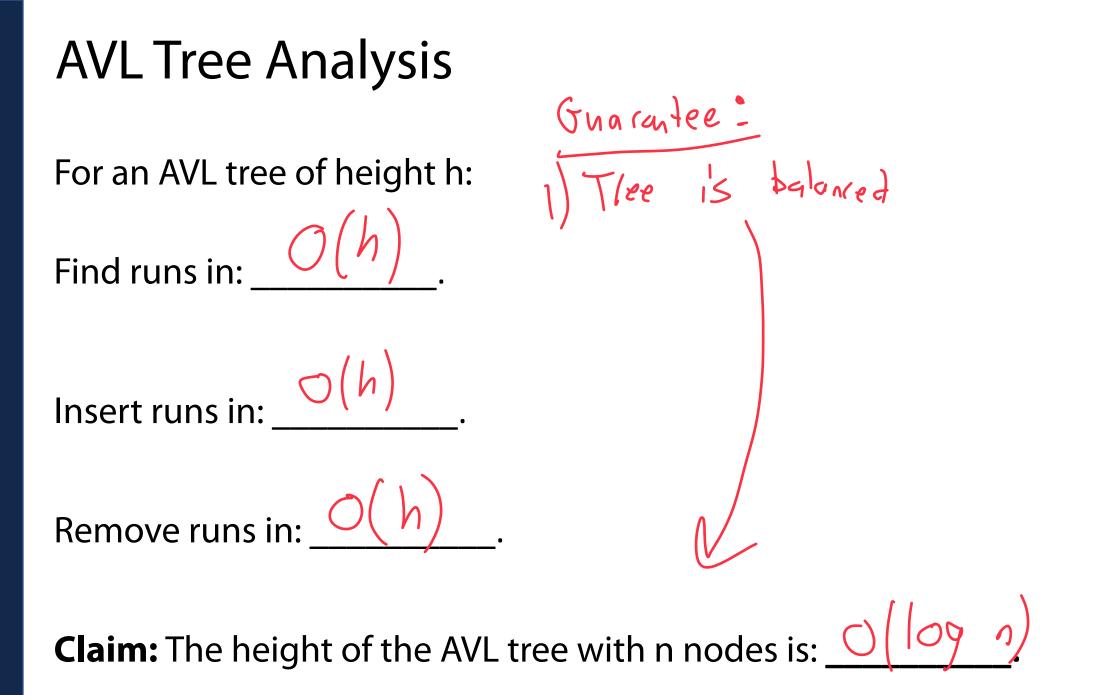








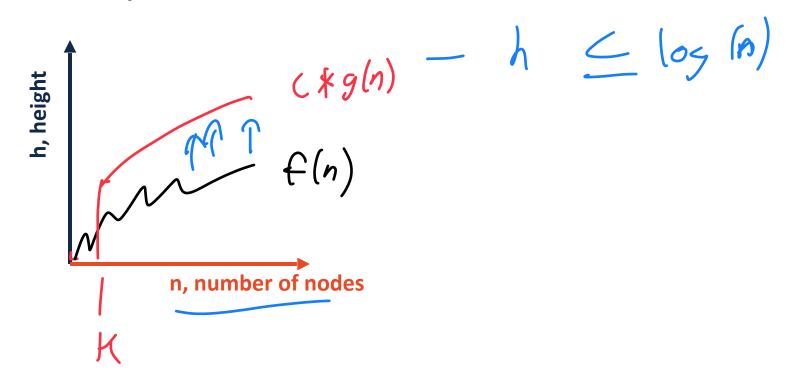


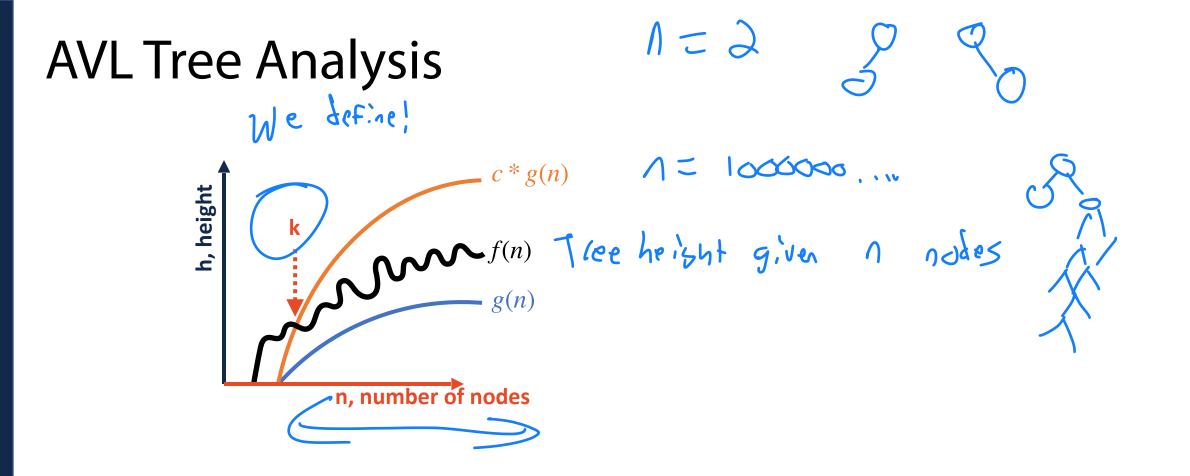


AVL Tree Analysis Definition of big-O:

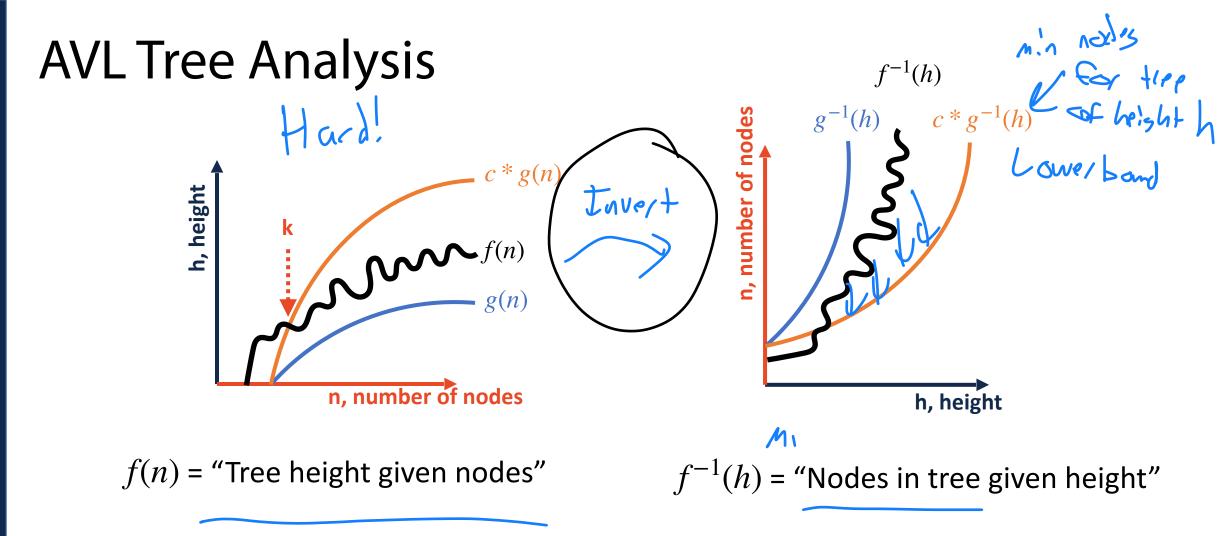
f(n) is O(g(n)) iff $\exists c, k \text{ s.t. } f(n) \leq cg(n) \ \forall n > k$

...or, with pictures:





The height of the tree, **f(n)**, will always be <u>less than</u> **c × g(n)** for all values where **n > k**.



The number of nodes in the tree, $f^{-1}(h)$, will always be greater than $c \times g^{-1}(h)$ for all values where n > k.

Plan of Action

Since our goal is to find the lower bound on **n** given **h**, we can begin by defining a function given **h** which describes the smallest number of nodes in an AVL tree of height **h**:

 $\sum_{n=1}^{n} N(h) = minimum number of nodes in an AVL tree of height h$

$$\begin{array}{c} \mathcal{S}_{N}(h) = 1 + N(h-1) + N(h-2) \\ \mathcal{T}_{L} \\$$

Simplify the Recurrence

N(h) = 1 + N(h-1) + N(h-2) $= N(h-1) + N(h-2) \ge 2$ > 2 N(h-2)

|+N(x) > N(x)N(h-1) > N(h-2)

Simplify the Recurrence N(h) = 1 + N(h - 1) + N(h - 2) N(h) > N(h - 1) + N(h - 2)

Simplify the Recurrence N(h) = 1 + N(h - 1) + N(h - 2)N(h) > N(h-1) + N(h-2)N(h) > 2N(h-2)11

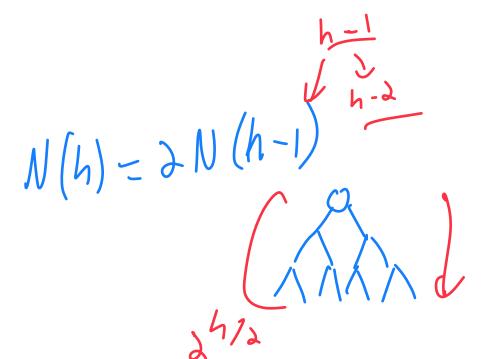
1) Know characteristic equation? Get answer immediately!

Simplify the Recurrence N(h) = 1 + N(h - 1) + N(h - 2)N(h) > N(h-1) + N(h-2)N(h) > 2N(h-2)2) Unroll: $N(h) > 2N(h-2) = 2(2(N(h-4))) = 2^k (N(h-2k))$

Simplify the Recurrence N(h) = 1 + N(h - 1) + N(h - 2)N(h) > N(h-1) + N(h-2)N(h) > 2N(h-2)2) Unroll: $N(h) > 2N(h-2) = 2(2(N(h-4))) = 2^k (N(h-2k)))$ When h - 2k = 0, k = h/2. Thus $N(h) > 2^{h/2}$

Simplify the Recurrence N(h) = 1 + N(h - 1) + N(h - 2) N(h) > N(h - 1) + N(h - 2) N(h) > 2N(h - 2)

3) Intuit approximate shape from recursion



Simplify the Recurrence N(h) = 1 + N(h - 1) + N(h - 2)N(h) > N(h-1) + N(h-2)N(h) > 2N(h-2)By whatever strategy you like $N(h) > 2^{h/2}$ Tip ±1 L'. Recurrence relation > Induction) tree _ (Biney)

Theorem: An AVL tree of height h has at least $N(h) > 2^{h/2}$.

Proof by Induction:

I. Consider an AVL tree and let **h** denote its height.

II. Base Case:
$$he! ght = 1$$

 $a = 1.41$
 $his is$
 $true$
An AVL tree of height 1 has at least 1.41 nodes.

112

Prove a Theorem
III. Base Case:
$$height = \lambda$$

 $N(\lambda) = 1 + N(\lambda - 1) + N(h - \lambda)$
 $= 2 + \lambda + 1$
 $= (4)$
 hin 4 nodes
 hin 4 nodes
 $f(h) = \lambda^{-1} = \lambda^{-1} = \lambda$
An AVL tree of height λ has at least λ nodes.

Prove a Theorem IV. Induction Step: Assume for all heights $i < h, N(i) \ge 2^{i/2}$. Prove that $N(h) \ge 2^{h/2}$ $N(h) = 1 + N(h-1) + N(h-\lambda) + S.' \text{mpl.'Fy}$ $= 2N(h-\lambda) + 2Phg + N(h) + By TH$ 7 $\lambda \cdot \lambda^{(h-\lambda)/\lambda}$ 7 $\lambda \cdot \lambda^{(h-\lambda)/\lambda}$ rewrite 7 $\chi \cdot \lambda^{(h)-1+1}$ 72^{h/2}

IV. Induction Step: Assume for all heights $i < h, N(i) \ge 2^{i/2}$. Prove that $N(h) \ge 2^{h/2}$
$$\begin{split} N(h) &= 1 + N(h-1) + N(h-2) \\ N(h) &> 2N(h-2) \\ N(h) &> 2 * 2^{(h-2)/2} \\ N(h) &> 2 * 2^{h/2-1} \\ N(h) &> 2 * 2^{h/2-1} \\ N(h) &> 2^{h/2} \\ \end{split}$$

V. Using a proof by induction, we have shown that:

V. Using a proof by induction, we have shown that:

 $N(h) \ge 2^{h/2}$, where N(h) is the min # of nodes of a tree of height h

But we need to know *n*, the **# of nodes in any tree of height h**

$$\begin{array}{l} n \geq N(h) \geq \lambda^{h_{0}} \\ 0g(n) \geq h_{0} \geq h_{0} \end{array} \\ h \in \lambda^{h_{0}} \\ 0g(n) \end{array}$$

V. Using a proof by induction, we have shown that:

 $N(h) \ge 2^{h/2}$, where N(h) is the **min # of nodes of a tree of height h**

But we need to know *n*, the **# of nodes in any tree of height h**

 $n \ge N(h)$

 $log(n) \ge \frac{h}{2}$) for all $h \ge 1$ $h \leq 2 \log(n)$

AVL Runtime Proof

An upper-bound on the height of an AVL tree is **O(lg(n))**:

N(h) := Minimum # of nodes in an AVL tree of height h N(h) = 1 + N(h-1) + N(h-2) > 1 + 2(h-1)/2 + 2(h-2)/2 $> 2 \times 2(h-2)/2 = 2(h-2)/2+1 = 2h/2$

Theorem #1:

Every AVL tree of height h has at least 2^{h/2} **nodes.**

AVL Runtime Proof

An upper-bound on the height of an AVL tree is O(lg(n)):

of nodes (n) $\geq N(h) > 2^{h/2}$ n > 2^{h/2} lg(n) > h/2 2 \times lg(n) > h h < 2 \times lg(n) , for h \geq 1

Proved: The maximum number of nodes in an AVL tree of height h is less than $2 \times lg(n)$.

Summary of Balanced BST **Pros: Cons:** 4 Rustime is Ollog n) Find is simple SEasy to coke 10(4, 13 Maybe not optimal. 4 Reasonably fast 45 yo(1) is optimal () (logn) Y U (0) じ Insort 4 Bad memory management ROMOVE WOllog n) speet for all major funitions ((ache lorality) Y Large ish Over load 5 Search trees are great for range find/nearest neishbur KD Thee lee Ly Iterators on trees

Cache Locality / Memory Management Menuly c þy A C1 cache " The Some! Very Slow TIPC

Every Data Structure So Far

	Unsorted Array	Sorted Array	Unsorted Linked List	Sorted Linked List	Binary Tree	BST	AVL
Find							
Insert							
Remove							
Traverse							