Data Structures

AVL Trees

CS 225 September 27, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Review why we need balanced trees
Review what an AVL rotation does
Review the four possible rotations for an AVL tree

Explore the implementation of AVL Tree

BST Analysis — Running Time

- BN
9
2

find O(h)

insert O(h)

(2
delete O(h) ° ° °

traverse O(n) e °

AVL-Tree: A self-balancing binary search tree

Every node in an AVL tree has a balance of:

1) Create a tmp pointer to root

Left Rotation

)
2) Update root to point to mid
) tmp->right = root->left

)

° 3
O

4) root->left =tmp

Left Rotation

All rotations are local (subtrees are not impacted)

Left Rotation
All rotations preserve BST property

&,

1) Create a tmp pointer to root

a 3) tmp->left = root->right

@ a 4) root->right =tmp

Right Rotation)
2) Update root to point to mid

)

)

Right Rotation

1) Create a tmp pointer to root

3) tmp->left = root->right

)
2) Update root to point to mid
)
4) root->right =tmp

LeftRight Rotation

Left @13

RS

@ Right @38

RightLeft Rotation

° a Left @10

VAl
) 3
Y 4 5
~~ L
Y *« Right @15 @
5 N
4
24
Y4 ! 4
Y4 ? 4
! 4
7 4
! 4

AVL Rotations

Left and right rotation convert sticks into mountains

AVL Rotations

LeftRight (RightLeft) convert elbows into sticks into mountains

ONERO OO
ke

AVL Rotations
Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)
2. The running time of rotations are constant

3. The rotations maintain BST property

Goal:

AVL Rotations

We can identify which rotation to do using balance

@

()

AVL Rotations

We can identify which rotation to do using balance

AVL Rotations

Left Right LeftRight RightLeft
Root Balance: 2 -2 -2 2
Child Balance: 1 -1 T -1

AVL Rotation Practice

£

AVL vs BST ADT @

The AVL tree is a modified binary search tree that rotates when necessary

struct TreeNode {
T key;
unsigned height;
TreeNode *left;
TreeNode *right;

b E

ol dWMNDER

How does the constraint on balance affect the core functions?

Find

Insert

Remove

AVL Find

(=
£5%F

_f£ind (7

)

AVL Insertion

oo dWMNER

struct TreeNode {
T key;

unsigned height;

TreeNode *left;

TreeNode *right;

Iy 8

_insert(6.5)

(.

(2 O
OO OO
OJOEROEENCO
O

_insert(6.5)

AVL Insertion

Insert (recursive pseudocode):
1. Insert at proper place °

2. Check for imbalance ° Q

3. Rotate, if necessary

4. Update height e a ° a
€ ONOy ©

T key;

unsigned height;
TreeNode *left;
TreeNode *right;

yE

oo dWMNER

151
152

153
157
160
166
167

template <typename K, typename V>

void AVI<K, D>:: insert(const K & key, const V & data, TreeNode

*& cur) {
if (cur == NULL) { cur = new TreeNode (key, data) ; }
else if (key < cur->key) { insert(key, data, cur->left); }
else if (key > cur->key) { _insert(key, data, cur->right)}
_ensureBalance (cur) ;

}

119 | template <typename K, typename V>
120 |void AVLI<K, D>:: ensureBalance (TreeNode *& cur) {
121 // Calculate the balance factor:
122 int balance = height (cur->right) - height(cur->left);
123
124 // Check if the node is current not in balance:
125 if (balance == -2) {
126 int 1 balance

helght(cur ->left->right) - height (cur->left->left);
127 if (1 balance == -1) { ;o
128 else { ;)
129 } else if (balance == 2) {
130 int r balance =

height (cur->right->right) - height(cur->right->left);
131 if(r balance == 1) { ;)
132 else { ;)
133 }
134
135 _updateHeight (cur) ;
136 | };

AVL Insertion

Given an AVL is balanced, insert can create at most one imbalance

b=1

AVL Insertion

Given an AVL is balanced, insert can create at most one imbalance

b=2

AVL Insertion

If we insert in B, | must have a balance pattern of 2, 1

b=2

AVL Insertion

A left rotation fixes our imbalance in our local tree.

b=2

After rotation, subtree has pre-insert height. (Overall tree is balanced)

AVL Insertion

If we insertin A, | must have a balance pattern of 2, -1

b=2

AVL Insertion

If we insertin A, | must have a balance pattern of 2, -1

b=2

=-1

A

AVL Insertion

A rightLeft rotation fixes our imbalance in our local tree.

b=2

=0

=-1

A

After rotation, subtree has pre-insert height. (Overall tree is balanced)

AVL Insertion

Theorem:
It an insertion occurred in subtrees t,

or t, and an imbalance was first

detected at t, then a
rotation about t restores the balance
of the tree.

We gauge this by noting the balance
factor of tiis and the balance
factor of t->left is

AVL Insertion

Theorem:
It an insertion occurred in subtrees t,

or t; and an imbalance was first

detected at t, then a
rotation about t restores the balance

of the tree.
A We gauge this by noting the balance
factor of tiis and the balance

factor of t->left is

AVL Insertion @

We've seen every possible insert that can cause an imbalance
Insert may increase height by at most:

A rotation reduces the height of the subtree by:

A single* rotation restores balance and corrects height!
What is the Big O of performing our rotation?

What is the Big O of insert?

AVL Insertion Practice _insert(14)

AVL Insertion Practice _insert(14)

_remove (10)

AVL Remove

o
a°e c°

o

_remove (10)

AVL Remove
O
(5 O
OO 0

ololoNG
o

_remove (10)

AVL Remove

_remove (10)

AVL Remove

o
N e
ofolio
o

_remove (10)

AVL Remove

oflo :e

AVL Remove _remove(10) (O

Remove (pseudo code):

1: Remove at proper place
2: Check for imbalance

3: Rotate, if necessary

4: Update height

AVL Remove

AVL Remove @

An AVL remove step can reduce a subtree height by at most:
But a rotation reduces the height of a subtree by one!

We might have to perform a rotation at every level of the tree!

AVL Tree Analysis

For an AVL tree of height h:

Find runs in:

Insert runs in:

Remove runs in:

Claim: The height of the AVL tree with n nodes is:

