Data Structures

Tree Definitions

CS 225 September 16, 2023
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Exam 1 (9/18 — 9/20)

Autograded MC and one coding question
Manually graded short answer prompt
Practice exam will be released on PL
Topics covered can be found on website

Registration started August 22

https://courses.engr.illinois.edu/cs225/fa2024/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Review trees and binary trees

Practice tree theory with recursive definitions and proofs
Discuss the tree ADT

Explore tree implementation details

Trees

A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

[In CS 225] a tree is also: e @

1) Acyclic — No path from node to itself e @

2) Rooted — A specific node is labeled root

Binary Tree

A binary tree is a tree 1 such that:

1. 7T=0

2. T = (data, TL, TR)

Binary Tree

Lets define additional terminology for different types of binary trees!

1.

Binary Tree: full

A full tree is a binary tree where every node has either 0 or 2 children
A tree F is full if and only if: e

1.

2.
OO
3 OO

Binary Tree: full

A full tree is a binary tree where every node has either 0 or 2 children

(s) (0
2. F = (data, D, D) ° e

A tree F is full if and only if:
1.F=0

3.F = (data,F, # O, F, # O) e e

Bmary Tree: perfECt A perfect tree is a binary tree where...
Every internal node has 2 children and all leaves are at the same level.

A tree P is perfect if and only if:

1.

: N

OROONO

Bmary Tree: perfeCt A perfect tree is a binary tree where...
Every internal node has 2 children and all leaves are at the same level.

A tree P is perfect if and only if:

1Ph — (data, Ph—l’Ph—l)

N

2.Py = (data,,0)= P_, =0
OXOONO

Binary Tree: complete A complete tree is a BT. where...

All levels except the last are completely filled.
The last level contains at least one node (and is pushed to left)

N

2 D@ ©
@R@

A tree Cis complete if and only if:

1.

Binary Tree: complete A complete tree is a BT. where...

All levels except the last are completely filled.
The last level contains at least one node (and is pushed to left)

N

2.C, = (data,P,_,C,_,) R @@ @
ONO,

A tree Cis complete if and only if:

1.C, = (data,Cy_, P;,_»)

3. C—l — @

Binary Tree

Why do we care?

1. Terminology instantly defines a particular tree structure

2. Understanding how to think ‘recursively’is very important.

Binary Tree: Thinking with Types

s every full tree complete?

Is every complete tree full?

Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree,
then there are NULL pointers.

Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Let F(n) be the max number of NULL pointers in a tree of n nodes

N=0 has one NULL

N=1 has two NULL Q

N=2 has three NULL Q‘

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Induction Step:

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

IS: Assume claimis truefor |7 | < k — 1, prove truefor |T| = k
Bydef, I'=r,T;, Tp. Let g be the # of nodesin 1}

Since rexists,0 < g < k— 1.ByIH, T; has g + 1 NULL

All nodes notin ror T} existin Tp. So T has k — g — 1 nodes
k — g — 1 is also smaller than k so by IH, T has k — g NULL

Total number of NULListhesumof 7T, and Tp:g+ 1 +k—qg=k+ 1

Tree ADT

Insert
Remove
Traverse
Find

Constructor

BinaryTree.h

#pragma once

template <class T>
class BinaryTree ({
public:
/* ... */

private:

OWooJdJoUrbd WN R

List.h

Tree.h

wWodJdJoUrdWNKE

#pragma once

template <typename T>
class List {
public:
/* ... */
private:
class ListNode {
T & data;

ListNode * next;

ListNode (T & data) :
data(data) , next (NULL) { }

iy

ListNode *head ;
/* ... */
};

WodJdJoUrdWNE

#pragma once

template <typename T>
class BinaryTree ({
public:
/* ... */
private:
class TreeNode {
T & data;

TreeNode * left;
TreeNode * right;
TreeNode (T & data) :

data(data), left (NULL),
right (NULL) { }

};
TreeNode *root_;

/* ... */
iy

Visualizing trees

Sl b

S e

e | __

<

SRR

S e

S e

S e

Tree Traversal

A traversal of a tree T is an ordered way of visiting every node once.

ORNOERONNOC
OO

Traversals

template<class T>
void BinaryTree<T>:: Order (TreeNode * root)

{

OO OO}
12

(b) (o) I

OWooJdoUrdWNE

