Data Structures Tree Definitions

CS 225 Brad Solomon September 16, 2023

Exam 1 (9/18 — 9/20)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam will be released on PL

Topics covered can be found on website

Registration started August 22

https://courses.engr.illinois.edu/cs225/fa2024/exams/

Learning Objectives

Review trees and binary trees

Practice tree theory with recursive definitions and proofs

Discuss the tree ADT

Explore tree implementation details

Trees

A non-linear data structure defined recursively as a collection of nodes where each node contains a value and zero or more connected nodes.

[In CS 225] a tree is also:

1) Acyclic — No path from node to itself

2) Rooted — A specific node is labeled root

Binary Tree

A **binary tree** is a tree *T* such that:

1. $T = \emptyset$

2. $T = (data, T_L, T_R)$

Binary Tree

1.

2.

3.

Lets define additional terminology for different **types** of binary trees!

Binary Tree: full

1.

2.

3.

A full tree is a binary tree where every node has either 0 or 2 children

A tree **F** is **full** if and only if:

Binary Tree: full

A full tree is a binary tree where every node has either 0 or 2 children

A tree **F** is **full** if and only if:

 $1.F = \emptyset$

2. $F = (data, \emptyset, \emptyset)$

3. $F = (data, F_1 \neq \emptyset, F_r \neq \emptyset)$

Binary Tree: perfect A **perfect tree** is a binary tree where... Every internal node has 2 children and all leaves are at the same level.

A tree **P** is **perfect** if and only if:

1.

2.

Binary Tree: perfect A **perfect tree** is a binary tree where... Every internal node has 2 children and all leaves are at the same level.

A tree **P** is **perfect** if and only if:

$$1. P_h = (data, P_{h-1}, P_{h-1})$$

$$2.P_0 = (data, \emptyset, \emptyset) \equiv P_{-1} = \emptyset$$

Binary Tree: complete A **complete tree** is a B.T. where...

All levels except the last are completely filled.

The last level contains at least one node (and is pushed to left)

A tree **C** is **complete** if and only if:

1.

2.

3.

С S Χ 5 2 Α Ζ Υ

Binary Tree: complete A complete tree is a B.T. where...

All levels except the last are completely filled.

The last level contains at least one node (and is pushed to left)

A tree **C** is **complete** if and only if:

1.
$$C_h = (data, C_{h-1}, P_{h-2})$$

2.
$$C_h = (data, P_{h-1}, C_{h-1})$$

3. $C_{-1} = \emptyset$

Binary Tree

Why do we care?

1. Terminology instantly defines a particular tree structure

2. Understanding how to think 'recursively' is very important.

Binary Tree: Thinking with Types

Is every **full** tree **complete**?

Is every **complete** tree **full**?

Binary Tree: Practicing Proofs

Theorem: If there are **n** objects in our representation of a binary tree, then there are _____ NULL pointers.

Binary Tree: Practicing Proofs

Theorem: If there are **n** objects in our representation of a binary tree, then there are **n+1** NULL pointers.

Base Case:

Binary Tree: Practicing Proofs

Theorem: If there are **n** objects in our representation of a binary tree, then there are **n+1** NULL pointers.

Base Case:

Let F(n) be the max number of NULL pointers in a tree of n nodes

N=0 has one NULL

N=1 has two NULL

N=2 has three NULL

Theorem: If there are **n** objects in our representation of a binary tree, then there are **n+1** NULL pointers.

Induction Step:

Theorem: If there are **n** objects in our representation of a binary tree, then there are **n+1** NULL pointers.

IS: Assume claim is true for $|T| \le k - 1$, prove true for |T| = k

By def, T = r, T_L , T_R . Let q be the # of nodes in T_L

Since *r* exists, $0 \le q \le k - 1$. By IH, T_L has q + 1 NULL

All nodes not in r or T_L exist in T_R . So T_R has k - q - 1 nodes

k - q - 1 is also smaller than k so by IH, T_R has k - q NULL

Total number of NULL is the sum of T_L and $T_R: q + 1 + k - q = k + 1$

Tree ADT

Insert

Remove

Traverse

Find

Constructor

BinaryTree.h

```
#pragma once
 1
2
 3
   template <class T>
   class BinaryTree {
 4
    public:
 5
       /* ... */
 6
 7
     private:
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 };
```

	List.h			Tree.h	
Γ	1	#pragma once	1	#pragma once	
	2		2		
	3	template <typename t=""></typename>	3	template <typename t=""></typename>	
	4	class List {	4	class BinaryTree {	
	5	public:	5	public:	
	6	/* */	6	/* */	
	7	private:	7	private:	
	8	class ListNode {	8	class TreeNode {	
	9	T & data;	9	T & data;	
	10		10		
	11	ListNode * next;	11	TreeNode * left;	
	12		12		
	13		13	TreeNode * right;	
	14		14		
	15	ListNode(T & data) :	15	TreeNode(T & data) :	
	16	<pre>data(data), next(NULL) { }</pre>	16	<pre>data(data), left(NULL),</pre>	
	17	};	17	right(NULL) { }	
	18		18		
	19		19	};	
	20		20		
	21	ListNode *head_;	21	TreeNode *root_;	
	22	/* */	22	/* */	
	23	};	23	};	

Visualizing trees

Tree Traversal

A **traversal** of a tree T is an ordered way of visiting every node once.

