
Department of Computer Science

Data Structures
Tree Definitions

September 16, 2023 CS 225
Brad Solomon

Exam 1 (9/18 — 9/20)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam will be released on PL

Topics covered can be found on website

Registration started August 22

https://courses.engr.illinois.edu/cs225/fa2024/exams/

https://courses.engr.illinois.edu/cs225/exams/

mp_lists released! (Due September 30th)
MP submission on PL has two separate submissions

The extra credit portion will only test part 1

Completion of the extra credit portion by the following
Monday is worth 8 points

Learning Objectives
Review trees and binary trees

Discuss the tree ADT

Explore tree implementation details

Practice tree theory with recursive definitions and proofs

Trees
A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

[In CS 225] a tree is also:

1) Acyclic — No path from node to itself

2) Rooted — A specific node is labeled root

1

2

3

4
5

6

Binary Tree

2

2S

C

5

A binary tree is a tree such that:T

1. T = Ø

2. T = (data, TL, TR)

Lets define additional terminology for different types of binary trees!

1.

2.

3.

Binary Tree

Binary Tree: full

A

XS

2

C

2

5

A tree F is full if and only if:

1.

2.

3.

A full tree is a binary tree where every node has either 0 or 2 children

Binary Tree: full

A

XS

2

C

2

5

A tree F is full if and only if:

1. F = Ø

2. F = (data, Ø, Ø)

3. F = (data, Fl ≠ Ø, Fr ≠ Ø)

A full tree is a binary tree where every node has either 0 or 2 children

Binary Tree: perfect

A tree P is perfect if and only if:

1.

2.

Every internal node has 2 children and all leaves are at the same level.
A perfect tree is a binary tree where…

A

XS

2

C

2 5

Binary Tree: perfect

A tree P is perfect if and only if:

1. Ph = (data, Ph−1, Ph−1)

2. P0 = (data, Ø, Ø) ≡ P−1 = Ø

Every internal node has 2 children and all leaves are at the same level.
A perfect tree is a binary tree where…

A

XS

2

C

2 5

Binary Tree: complete

A tree C is complete if and only if:

All levels except the last are completely filled.

A complete tree is a B.T. where…

A

XS

2

C

2 5

Y Z

1.

2.

3.

The last level contains at least one node (and is pushed to left)

Binary Tree: complete

A tree C is complete if and only if:

All levels except the last are completely filled.

A complete tree is a B.T. where…

A

XS

2

C

2 5

Y Z

1. Ch = (data, Ch−1, Ph−2)

2. Ch = (data, Ph−1, Ch−1)

3. C−1 = Ø

The last level contains at least one node (and is pushed to left)

Why do we care?

1. Terminology instantly defines a particular tree structure

2. Understanding how to think ‘recursively’ is very important.

Binary Tree

Binary Tree: Thinking with Types
Is every full tree complete?

Is every complete tree full?

Binary Tree: Practicing Proofs
Theorem: If there are n objects in our representation of a binary tree,
then there are ________ NULL pointers.

Binary Tree: Practicing Proofs
Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Binary Tree: Practicing Proofs
Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Let F(n) be the max number of NULL pointers in a tree of n nodes

N=0 has one NULL

N=1 has two NULL

N=2 has three NULL

Induction Step:

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

IS: Assume claim is true for , prove true for |T | ≤ k − 1 |T | = k

By def, . Let be the # of nodes in T = r, TL, TR q TL

Since exists, . By IH, has NULLr 0 ≤ q ≤ k − 1 TL q + 1

All nodes not in or exist in . So has nodesr TL TR TR k − q − 1

 is also smaller than so by IH, has NULLk − q − 1 k TR k − q

Total number of NULL is the sum of and : TL TR q + 1 + k − q = k + 1

Tree ADT

Insert

Remove

Traverse

Find

Constructor

BinaryTree.h
#pragma once

template <class T>
class BinaryTree {
 public:
 /* ... */

 private:

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#pragma once

template <typename T>
class List {
 public:
 /* ... */
 private:
 class ListNode {
 T & data;

 ListNode * next;

 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;
 /* ... */
};

List.h
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#pragma once

template <typename T>
class BinaryTree {
 public:
 /* ... */
 private:
 class TreeNode {
 T & data;

 TreeNode * left;

 TreeNode * right;

 TreeNode(T & data) :
 data(data), left(NULL),
right(NULL) { }

 };

 TreeNode *root_;
 /* ... */
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Tree.h

Visualizing trees

A

XS

2

C

2 5

Y

C

S X

A 2 2 5

Y

Ø Ø

Ø Ø Ø Ø ØØØ

Tree Traversal

*-

b

+

/

c

d ea

A traversal of a tree T is an ordered way of visiting every node once.

Traversals
template<class T>
void BinaryTree<T>::_____Order(TreeNode * root)
{

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

*-

b

+

/

c

d ea

