Data Structures

Iterators and Tree Fundamentals

CS 225 September 13, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

projections

n ',""A | " . . i
| Speaker Talks @ IBRGIGEAELN —

; 3 echmania «—= |

Workshops [& | |
v e e s T

PuzzleBang ==

Fe ol [T {7 m |

, Networking N

Learning Objectives

Discuss the importance of iterators
Review trees and binary trees
Practice tree theory with recursive definitions and proofs

Discuss the tree ADT

Stack ADT
e [Order]: LIFO

 [Implementation]: Array (such as std::vector)

e [Runtime]: O(1) Push and Pop

Queue ADT
e [Order]: FIFO

 [Implementation]: Circular Queue as Array

e [Runtime]: O(1)

Queue<int> q;

A B C g.enqueue(D);
g.dequeue();
g.dequeue();

. .d ;
Enqueue(D): :td::z:::g;

Insert D at index (size+front) % capacity a-enqueue(E);

size++
Dequeue(): Remove data at index front

front = (front+l) % capacity

size--

Size: 3
Front: 3 Capacity: 6

Queue Data Structure: Resizing

Queue<char> q;

g.enqueue(d);
g.enqueue(a);
g.enqueue(y);
g.enqueue(i);
g.enqueue(s);

o o Queue<char> q;
Queue Data Structure: Resizing ..
g.enqueue(d);
g.enqueue(a);
3 y m o) N d g.enqueue(y);
g.enqueue(i);
g.enqueue(s);

o o Queue<char> q;
Queue Data Structure: Resizing . ’ @

g.enqueue(d);
g.enqueue(a);
3 y m o) N d g.enqueue(y);
g.enqueue(i);
g.enqueue(s);

lterators

We want to be able to loop through all elements for any underlying
implementation in a systematic way

> ">¢

1NN
“e

™
e

lterators

We want to be able to loop through all elements for any underlying
implementation in a systematic way

N T

—“"GD ListNode *

>
8 (2 (3 (curr

unsigned
index

Some form
of

Do
"o

(X, ¥y, 2)

‘\\]'
"

lterators

Iterators provide a way to access items in a container without exposing
the underlying structure of the container

A
vy

Cube: :Iterator start = myCube.begin() ;

while (it '= myCube.end()) {
std::cout << *it <<« " ";
it++;

SJSo ok WMNhR

lterators

For a class to implement an iterator, it needs two functions:

Iterator begin()

Iterator end()

lterators

The actual iterator is defined as a class inside the outer class:

1.1t must be of base class std: :iterator

2. It must implement at least the following operations:
Iterator& operator ++()
const T & operator *()

bool operator !=(const Iterator &)

lterators

Here is a (truncated) example of an iterator:

1| template <class T>
2| class List {
3
4

class ListIterator : public
std: :iterator<std::bidirectional iterator tag, T> {

5 public:

6

7 ListIterator& operator++() ;
8

o] ListIterator& operator-- ()
10
11 bool operator!=(const ListIteratoré& rhs);
12
13 const T& operator*() ;
14 };
15
16 ListIterator begin() const;
17
18 ListIterator end() const;

19|}

stiList.cpp

WoOoOJoonUld WN =

#include <list>
#include <string>
#include <iostream>

struct Animal {
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* nothing */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(qg) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back (b) ;

for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it) {
std: :cout << (*it) .name << " " << (*it) .food << std::endl;
}

return O;

WoOoOJoonUld WN =

std: :vector<Animal> zoo;

/* Full text snippet */

for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it) {
std: :cout << (*it) .name << " " << (*it) .food << std::endl;
}

/* Auto Snippet */

for (auto it = zoo.begin(); it !'= zoo.end; ++it) ({
std: :cout << (*it) .name << " " << (*it) .food << std::endl;
}

/* For Each Snippet */

for (const Animal & animal : zoo) {
std: :cout << animal.name << " " << animal.food << std::endl;

}

Trees

A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

[In CS 225] a tree is also: e @

1) Acyclic — No path from node to itself e @

2) Rooted — A specific node is labeled root

Binary Tree

A binary tree is a tree 1 such that:

1. 7T=0

2. T = (data, TL, TR)

Which of the following are binary trees? ?;f’

Sl

Join Code 225

@\>

s @\@ f\@ < o

A B C

Binary Tree

Lets define additional terminology for different types of binary trees!

1.

Binary Tree: full

A full tree is a binary tree where every node has either 0 or 2 children
A tree F is full if and only if: e

1.

2.
OO
3 OO

Binary Tree: full

A full tree is a binary tree where every node has either 0 or 2 children

(s) (0
2. F = (data, D, D) ° e

A tree F is full if and only if:
1.F=0

3.F = (data,F, # O, F, # O) e e

Bmary Tree: perfECt A perfect tree is a binary tree where...
Every internal node has 2 children and all leaves are at the same level.

A tree P is perfect if and only if:

1.

: N

OROONO

Bmary Tree: perfeCt A perfect tree is a binary tree where...
Every internal node has 2 children and all leaves are at the same level.

A tree P is perfect if and only if:

1Ph — (data, Ph—l’Ph—l)

N

2.Py = (data,,0)= P_, =0
OXOONO

Binary Tree: complete A complete tree is a BT. where...

All levels except the last are completely filled.
The last level contains at least one node (and is pushed to left)

N

2 D@ ©
@R@

A tree Cis complete if and only if:

1.

Binary Tree: complete A complete tree is a BT. where...

All levels except the last are completely filled.
The last level contains at least one node (and is pushed to left)

N

2.C, = (data,P,_,C,_,) R @@ @
ONO,

A tree Cis complete if and only if:

1.C, = (data,Cy_, P;,_»)

3. C—l — @

Binary Tree

Why do we care?

1. Terminology instantly defines a particular tree structure

2. Understanding how to think ‘recursively’is very important.

Binary Tree: Thinking with Types

s every full tree complete?

Is every complete tree full?

Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree,
then there are NULL pointers.

Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Let F(n) be the max number of NULL pointers in a tree of n nodes

N=0 has one NULL

N=1 has two NULL Q

N=2 has three NULL Q‘

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Induction Step:

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

IS: Assume claimis truefor |7 | < k — 1, prove truefor |T| = k
Bydef, I'=r,T;, Tp. Let g be the # of nodesin 1}

Since rexists,0 < g < k— 1.ByIH, T; has g + 1 NULL

All nodes notin ror T} existin Tp. So T has k — g — 1 nodes
k — g — 1 is also smaller than k so by IH, T has k — g NULL

Total number of NULListhesumof 7T, and Tp:g+ 1 +k—qg=k+ 1

Tree ADT

