Data Structures Iterators and Tree Fundamentals CS 225 September 13, 2024 Brad Solomon

reflections projections

Learning Objectives

Discuss the importance of iterators

Review trees and binary trees

Practice tree theory with recursive definitions and proofs

Discuss the tree ADT

Stack ADTOrder]: LIFO

• [Implementation]: Array (such as std::vector)

• [Runtime]: O(1) Push and Pop

• [Implementation]: Circular Queue as Array

• [Runtime]: O(1)

	A	В	C
--	---	---	---

Queue<int> q;

...
q.enqueue(D);
q.dequeue();
q.dequeue();
q.dequeue();
q.dequeue();
q.dequeue();
q.enqueue(E);

Enqueue(D):

```
Insert D at index (size+front) % capacity
size++
```

Dequeue(): Remove data at index front

```
front = (front+1) % capacity
```

size--

Size: 3

Front: 3

Capacity: 6

Queue Data Structure: Resizing

Queue<char> q;

...
q.enqueue(d);
q.enqueue(a);
q.enqueue(y);
q.enqueue(i);
q.enqueue(s);

а	у	m	0	n	d	q.enqueue(a); q.enqueue(a); q.enqueue(y); q.enqueue(i);					
									q.enque	ue(s <i>);</i>	

Queue Data Structure: Resizing

Queue<char> q;

...

<u></u>								q.enqueue(d);				
а	у	m	0	n	d				q.enque q.enque q.enque	enqueue(a); enqueue(y); .enqueue(i);		
									q.enque	ue(s);		

Oueue Data Structure Resizina

Queue<char> q;

We want to be able to loop through all elements for any underlying implementation in a systematic way

We want to be able to loop through all elements for any underlying implementation in a systematic way

Iterators

Iterators provide a way to access items in a container without exposing the underlying structure of the container


```
1 Cube::Iterator start = myCube.begin();
2
3 while (it != myCube.end()) {
4 std::cout << *it << " ";
5 it++;
6 }
7</pre>
```


For a class to implement an iterator, it needs two functions:

Iterator begin()

Iterator end()

The actual iterator is defined as a class **inside** the outer class:

1. It must be of base class **std::iterator**

2. It must implement at least the following operations:

Iterator& operator ++()

const T & operator *()

bool operator !=(const Iterator &)

Iterators

Ċ

Here is a (truncated) example of an iterator:

```
template <class T>
 1
   class List {
 2
 3
       class ListIterator : public
 4
   std::iterator<std::bidirectional iterator tag, T> {
         public:
 5
 6
 7
           ListIterator& operator++();
 8
           ListIterator& operator--()
 9
10
11
           bool operator!=(const ListIterator& rhs);
12
13
           const T& operator*();
       };
14
15
16
       ListIterator begin() const;
17
       ListIterator end() const;
18
19 };
```

stlList.cpp

```
1
   #include <list>
   #include <string>
2
   #include <iostream>
 3 |
 4
   struct Animal {
5 |
     std::string name, food;
 6
     bool big;
 7
     Animal(std::string name = "blob", std::string food = "you", bool big = true) :
8
       name(name), food(food), big(big) { /* nothing */ }
9
10
   };
11
   int main() {
12
     Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
13
     std::vector<Animal> zoo;
14
15
     zoo.push back(q);
16
     zoo.push back(p); // std::vector's insertAtEnd
17
     zoo.push back(b);
18
19
     for ( std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it ) {
20
       std::cout << (*it).name << " " << (*it).food << std::endl;</pre>
21
22
     }
23
     return 0;
24
25
```

```
1
   std::vector<Animal> zoo;
 2
 3
 4
   /* Full text snippet */
 5
 6
     for ( std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it ) {
 7
        std::cout << (*it).name << " " << (*it).food << std::endl;</pre>
8
     }
 9
10
11
   /* Auto Snippet */
12
13
     for ( auto it = zoo.begin(); it != zoo.end; ++it ) {
14
       std::cout << (*it).name << " " << (*it).food << std::endl;</pre>
15
16
      }
17
   /* For Each Snippet */
18
19
     for ( const Animal & animal : zoo ) {
20
        std::cout << animal.name << " " << animal.food << std::endl;</pre>
21
22
      }
23
24
25
```

Trees

A non-linear data structure defined recursively as a collection of nodes where each node contains a value and zero or more connected nodes.

[In CS 225] a tree is also:

1) Acyclic — No path from node to itself

2) Rooted — A specific node is labeled root

Binary Tree

A **binary tree** is a tree *T* such that:

1. $T = \emptyset$

2. $T = (data, T_L, T_R)$

Binary Tree

1.

2.

3.

Lets define additional terminology for different **types** of binary trees!

Binary Tree: full

1.

2.

3.

A full tree is a binary tree where every node has either 0 or 2 children

A tree **F** is **full** if and only if:

Binary Tree: full

A full tree is a binary tree where every node has either 0 or 2 children

A tree **F** is **full** if and only if:

 $1.F = \emptyset$

2. $F = (data, \emptyset, \emptyset)$

3. $F = (data, F_1 \neq \emptyset, F_r \neq \emptyset)$

Binary Tree: perfect A **perfect tree** is a binary tree where... Every internal node has 2 children and all leaves are at the same level.

A tree **P** is **perfect** if and only if:

1.

2.

Binary Tree: perfect A **perfect tree** is a binary tree where... Every internal node has 2 children and all leaves are at the same level.

A tree **P** is **perfect** if and only if:

$$1. P_h = (data, P_{h-1}, P_{h-1})$$

$$2.P_0 = (data, \emptyset, \emptyset) \equiv P_{-1} = \emptyset$$

Binary Tree: complete A **complete tree** is a B.T. where...

All levels except the last are completely filled.

The last level contains at least one node (and is pushed to left)

A tree **C** is **complete** if and only if:

1.

2.

3.

С S Χ 5 2 Α Ζ Υ

Binary Tree: complete A complete tree is a B.T. where...

All levels except the last are completely filled.

The last level contains at least one node (and is pushed to left)

A tree **C** is **complete** if and only if:

1.
$$C_h = (data, C_{h-1}, P_{h-2})$$

2.
$$C_h = (data, P_{h-1}, C_{h-1})$$

3. $C_{-1} = \emptyset$

Binary Tree

Why do we care?

1. Terminology instantly defines a particular tree structure

2. Understanding how to think 'recursively' is very important.

Binary Tree: Thinking with Types

Is every **full** tree **complete**?

Is every **complete** tree **full**?

Binary Tree: Practicing Proofs

Theorem: If there are **n** objects in our representation of a binary tree, then there are _____ NULL pointers.

Binary Tree: Practicing Proofs

Theorem: If there are **n** objects in our representation of a binary tree, then there are **n+1** NULL pointers.

Base Case:

Binary Tree: Practicing Proofs

Theorem: If there are **n** objects in our representation of a binary tree, then there are **n+1** NULL pointers.

Base Case:

Let F(n) be the max number of NULL pointers in a tree of n nodes

N=0 has one NULL

N=1 has two NULL

N=2 has three NULL

Theorem: If there are **n** objects in our representation of a binary tree, then there are **n+1** NULL pointers.

Induction Step:

Theorem: If there are **n** objects in our representation of a binary tree, then there are **n+1** NULL pointers.

IS: Assume claim is true for $|T| \le k - 1$, prove true for |T| = k

By def, T = r, T_L , T_R . Let q be the # of nodes in T_L

Since *r* exists, $0 \le q \le k - 1$. By IH, T_L has q + 1 NULL

All nodes not in r or T_L exist in T_R . So T_R has k - q - 1 nodes

k - q - 1 is also smaller than k so by IH, T_R has k - q NULL

Total number of NULL is the sum of T_L and $T_R: q + 1 + k - q = k + 1$

Tree ADT