Data Structures

Iterators and Tree Fundamentals

Ay v
CS 225 <" September 13, 2024
Brad Solomon

B
UNIVERSITY OF é“\u
\;

ILLINOIS f;

URBANA-CHAMPAIGN

Department of Computer Science



projections

n ',""A | " . . i
| Speaker Talks @ IBRGIGEAELN —

; 3 echmania «—= |

Workshops [& | |
v e e s T

PuzzleBang ==

Fe ol [T {7 m |

, Networking N




Learning Objectives ~ Quews?
Discuss the importance of iteratcy
Review trees and binary trees <

Practice tree theory with recursive definitions and proofs

s

Discuss the tree ADT 0o ~
/\/




Stack ADT
e [Order]: LIFO ﬁ/)

 [Implementation]: Array (such as std::vector)
P

¥
e [Runtime]: O(1) Push and Pop




Queue ADT é@ >0 —>02C — >

FIF T
e [Order]: FIFO s 70/

 [Implementation]: Circular Queue as Array

~——

e [Runtime]: O(1)




Frent €ttt
O [ > J 3 —3' y Queue<int> q;

Ky
D ﬂ /b< ' éac.enqueue(_g)‘;
= - g.dequeue();
A (Jg “ 1 q.dequeue();
ny. — € _3 g.dequeue();

Enqueue(D): q.dequeue();

Insert D at index (size+front) % capacit? q-enqueue(E);
zs + 3) js g — ()

size++ 2o+t Whi
Dequeue(): Remove data at index front Slze =2 (Pl
front = (front+l) % capacity
size-- (S +7—>¢/o ( apecty

Size: X#\i x ()_/ U“g-’jhlf\ |‘4'15'

Front: ,8/f>f7§ B ) Capacity: 6



Queue Data Structure: Resizing

Queue<char> q;

g.enqueue(d);
g.enqueue(a);
g.enqueue(y);
g.enqueue(i);
g.enqueue(s);



Queue<char> q;

Queue Data Structure: Resizing i
g.enqueue(d);
g.enqueue(a);

Ay fe]efn]d o
/}\ g.enqueue(s);

L )
A

) C
A’M d(’q,wug ( )
?( cnk - & dl




Queue Data Structure: Resizing

Feoat

% Q(['Y

Queue<char> q;

g.enqueue(d);
g.enqueue(a);
g.enqueue(y);

:M g.enqueue(i);

g.enqueue(s);

0 n d 3
’D/ 4“0«."
(U4

v
m
d
d \([C)|/\ I o e

> 7

o | @-ﬁ~7 Z 7V C 7
)

e a Jo

/7




o o Queue<char> q;
Queue Data Structure: Resizing . ’ @

/ g.enqueue(d);
g.enqueue(a);

3 y m o) N d g.enqueue(y);
g.enqueue(i);

/ g.enqueue(s);
/

7 - >

Falt = g O(l )* Aerted Tme




lterators — mp_ls¥

We want to be able to loop through all elements for any underlying
implementation in a systematic way

XTTT7
=
8 | € 2 | & s | &

—y




lterators

We want to be able to loop through all elements for any underlying

: : . . ket
implementation in a systematic way 1
N I
— ’¢ '
8 | & 2 | & 5 | & t;i:NOde ' Culr s dmtn  Cotc 7 204t
— unsigned ' ‘
A[/) index ACL 3 (/\J(’K t
?ef\-uf}d((‘)
f / Some form
of 77 7>
(% ¥, 2) -

.\.
"




Iterators Cube pryer DY i‘r

<‘| '\7
Iterators provide a way to access items in a container without exposing

the underlying structure of the container

= > =
Cube: :Iterator it = myCube.begin() ;
\__—\//\

while ({it != mycw {
std::cout << FiE << " ";
it++; —

}

-
6“‘8/4@) [ ( e ra ho )
*(“* — de teftrune

SJSo ok WMNhR




lterators

For a cIas(plement anTt)erator, it needs two functions:

Iterator begin() - (etvin 479@ derchor
\7?0.‘!\\5 fo> S}qf-)' Fes.'-l:"ﬂ

Iterator end() — (/(,, ype Yecotor
e PQ.'x]}s b oOne  Mem odbiess

the ed of e



lterators

The actual iterator is defined as a class inside the outer class:

1.1t must be of base class std: :iterator

2. It must implement at least the following operations:
Iterator& operator ++() — move Yo Aaxd e

const T & operator *() — (ol 1l da™ [vahe

bool operator !=(const Iterator &)“‘["(fh A

at iyt pos

:"l'(/«}c/; CJN
CUM |



Iterators L_l—g;’:/,’sg ) 12 4 4 s

ere is a (truncated) example of an iterator:

|
\ n(ﬁw«,"L

+ET

= W IhhRr

=
O VWoJdo U

11
12
13
14
15
16
17
18
19

template <class T>
class List {

» =

class ListIterator : public

std: :iterator<std::bidirectional iterator tag, T> {
public:

Wr R t/'(( e,

%('ListIterator& operator++ () ;
R
ListIterator& operator-- ()

I)F bool operator!=(const ListIteratoré& rhs);

iﬁ const T& operator*() ; /
}i

ListIterator begin() const;

ListIterator end() const;

4
altrar £ end

then use 10—
JaluQ

-}

%

-—a.J:MPbWO&:Aa, *VQS

oo 1 Yuavr al(ess

};




stiList.cpp

WoOoOJoonUld WN =

#include <list>
#include <string>
#include <iostream>

struct Animal { é{ gf
std: :string name, food;
bool big; &
Animal (std: :string name = "blob", std::string food = "you", bool big = true) :
name (name) , food(food), big(big) { /* nothing */ }
}i

int main() {

Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

g——@*
zoo.push back(qg) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push_back(12;'//,,————:y U[

S e I e kA .
for ( std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end();, ++it ) {
std: :cout << (*it) .name << " " << (*it) .food << std::endl; ~— -
} —
')

return 0O; 4\ I

} A l\-l"*a\




stiList.cpp

OWooJoUl b WN =

1 ACH]  ve A




std: :vector<Animal> zoo;

WoOoOJoonUld WN =

* 1 *
/* Full text snippet */ \/ (‘// d
for (étd: :vector<Animal>: :iterator.> it = zoo.begin(); it != zoo.end(); ++it ) {
std: cout << (*it) .name << " " << (*it) .food << std::endl;
} A
10
11

12 | /* Auto Snippet %
13

14 for (t = zoo.begin(); it !'= zoo.end; ++it ) {

15 std: :cout << (*it) .name << " " << (*it).food << std::endl;
16 }

17

18 | /* For Each Snippet */

19 =

20 for ( const Animal & animal / zoo ) {

21 std: :cout << animal.name << " " << animal.food << std::endl;
22 }

23

24




Trees

Knon-lineaﬂa—’a structurbdeﬁned recursively as a collection of nodes
W Ins a value and zero or more connected nodes.
[In CS 225] a tree is also: e @

1) Acyclic — No path from node to itself e @

[ -

2) Rooted — A specific node is labeled root

& (ant



Binary Tree

A binary tree is a tree 1 such that:

r

1. 7T=0

Codk

2. T — (dZTZ‘él, TL’ TR)

— T




X% Say TR
1030 \\A-JQ“

Which of the following are binary trees? ?%um
ik

Join Code: 225




Binary Tree

Lets define additional terminology for different types of binary trees!

1.




Binary Tree: full

A full tree is a binary tree where every node has either 0 or 2 children
A tree F is full if and only if: e

1.

2.
OO
3 OO




Binary Tree: full

A full tree is a binary tree where every node has either 0 or 2 children

(s) (0
2. F = (data, D, D) ° e

A tree F is full if and only if:
1.F=0

3.F = (data,F, # O, F, # O) e e




Bmary Tree: perfECt A perfect tree is a binary tree where...
Every internal node has 2 children and all leaves are at the same level.

A tree P is perfect if and only if:

1.

: N

OROONO




Bmary Tree: perfeCt A perfect tree is a binary tree where...
Every internal node has 2 children and all leaves are at the same level.

A tree P is perfect if and only if:

1Ph — (data, Ph—l’Ph—l)

N

2.Py = (data,,0)= P_, =0
OXOONO




Binary Tree: complete A complete tree is a BT. where...

All levels except the last are completely filled.
The last level contains at least one node (and is pushed to left)

N

2 D@ ©
@R@

A tree Cis complete if and only if:

1.




Binary Tree: complete A complete tree is a BT. where...

All levels except the last are completely filled.
The last level contains at least one node (and is pushed to left)

N

2.C, = (data,P,_,C,_,) R @@ @
ONO,

A tree Cis complete if and only if:

1.C, = (data,Cy_, P;,_»)

3. C—l — @




Binary Tree

Why do we care?

1. Terminology instantly defines a particular tree structure

2. Understanding how to think ‘recursively’is very important.




Binary Tree: Thinking with Types

s every full tree complete?

Is every complete tree full?




Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree,
then there are NULL pointers.




Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:




Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Let F(n) be the max number of NULL pointers in a tree of n nodes

N=0 has one NULL

N=1 has two NULL Q

N=2 has three NULL Q‘




Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Induction Step:




Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

IS: Assume claimis truefor |7 | < k — 1, prove truefor |T| = k
Bydef, I'=r,T;, Tp. Let g be the # of nodesin 1}

Since rexists,0 < g < k— 1.ByIH, T; has g + 1 NULL

All nodes notin ror T} existin Tp. So T has k — g — 1 nodes
k — g — 1 is also smaller than k so by IH, T has k — g NULL

Total number of NULListhesumof 7T, and Tp:g+ 1 +k—qg=k+ 1




Tree ADT
Tee odes
& get (b ()

syt Vata ()
20 njert (ebl |0 hr /é 7



