Data Structures

C++ Review

CS 225 August 28, 2023
Brad Solomon

UNIVERSITY OF \

ILLINOIS —

URBANA-CHAMPAIGN

Department of Computer Science

Theta Tau Fall Rush 2024
Geil; it &

\Xg
ﬁ |

5:30-7 PM
o o)

Quad Day

August 25t 12PM-4PM
Main Quad

Business Quad Day

August 27 3:30PM-6PM
South Quad

August 29t 6PM-7PM
Location TBA

~/ Companies our '\

[consultants S
have worked
with

September 3-¢ 7PM-8PM
Location TBA

; ‘ | | = b -
. = Hi A | - (i SOUEESES

‘l' ; TEL J i — R

| s = = If | E = amms

= S = L | =
4 EE g = i 1 I === — et
=4 H E i ' q o i & f | = = [:
‘o ' gl | =8 . 11T = o

LHEE
N 13141
- - $

TCONSULTING | | | oy

| Location TBA

Please dress business casual for Info
Nights, Meet & Greet, and Case Training

UIUC’s premier student-run consulting group e e

1. August 30t @ 11:59pm
2. September 6t @ 11:59pm

f OTCR Consulting

‘ https:/ ¢ Iti

Do you want to do research?. ..
. . . Are you a freshman or sophomore?

Come apply to URSA!

Undergraduate Research in Scientific Advancement

Benefits:
Research Experience
Networking
Soft and Hard Skill Development Scan for:
1 credit hour + GPA boost * Website
« Application

Resume Booster
* |Interest form

(Optional) Open Lab This Week

This week’s lab is open office hours
Focus is making sure your machine is setup for semester

Installation information available on website

&) /'\ o'
n -0

\ /

)

Office Hours

The office hour calendar will be populated next week
For now, please use Discord or Piazza

You can also stop by my regular office hours!
—~

Thursday, 11 AM — 12 PM

Siebel 2233

Testing a ‘Clicker’ Set-up! E E

i ?
Have you signed up to take exam 0 E —
A) Yes!

i

Join Code: 225

B) No!

You can participate by going to website:

https://clicker.cs.illinois.edu/

https://clicker.cs.illinois.edu/

Exam 0 (9/4 — 9/6) g%uﬁ @

An introduction to CBTF exam environment / expectations
Quiz on foundational knowledge from all pre-reqgs
Practice questions can be found on PL

Topics covered can be found on website

Registration started August 22

https://courses.engr.illinois.edu/cs225/fa2024/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

A brief high level review of C++
Fundamentals of Objects / Classes
Memory Management and Ownership

Pointers and Const
Brainstorm the List Abstract Data Types (ADT)

Encapsulation - Classes

Abstraction / organization separating:

Internal Implementation External Interface

L7 H“W (17 \]\I\'\a\‘\’
2 Naur \)ﬁ\b 7 D ARY 9N

i :

¥ TR YA TR O

= |7
1)
=
=
=)
=

A

‘vw..

Brainstorming a‘Library’ class 5 Dqto
class Library { T/\'\'Q (‘Fq({_ ? Fmﬁ\'\‘“\l\b

public:
._/ ‘|
\5(61

L) anks ‘V\ ()
S o3& Baks (re mwe BRRS
7) e

=
cCwoodoUlbdWDNPK

el
WN R~

private: I"\ ‘e"’"’\\'ﬂ\‘:M H V\/
T Liboory Grds ? 7

G Raghs Qur du’ 7) ke ke whot ok

NRRRRRR
CwWmWJo Ul

G Boits A AN

N
[

}

Memory Management — Ownership

Imagine | have a Library class (and hidden Book class):

class Library{

public: }
void addBook (Book book) ; (C‘I'Vo/\ %k(

void removeBook (std::string title);///

private:
std: : vector<Book> in;

std: : vector<Book> out;
};
\ ! ‘

‘A — L\ ljg(‘

Ou \7LT \\)

OooJdJouUldkd WPNE

Memory Management — Ownership E E
Imagine | have a Library class: ?Fﬁﬁ
E i

1| class Library({

2|public:

3 void addBook (Book book) ;

4 void removeBook (std::string title) ; .

5 i Join Code: 225
6|private:

7 std: :vector<Book> in;

8 std: :vector<Book> out;

9|};

Does my Library class ‘own’ the Books it is storing?

A) Yes! @ No!) C) Not sure

Memory Management

Stack: Local variable storage @CSV Wy 4 {2";“'\

S<ape

Ex: int x = 5; o
efing

M("’\ Ay)\«b\ak b Comj’««’rfr

H : Dynamic storage
b | > ?'1535\— unll deleta)

Ex: int* x = new int[5];

v T Hope b dere

HOBRIT

Memory Management - Parameters

Pass by Value: A local copy of the original \

Ex: addBook (Book book) B(\ |
a
r

Pass by Pointer to Value: An address on the heap
i, i D
Ex: addBook (Book* book) QL) s 20 Pk

Pass by Reference: An alias to an existing variable j

Ly (o} peate Rask L (= W¥

Ex: addBook (Book& book)

Memory Management - Parameters

Which implementation is ‘best’? Why?

OWoJdJooUbd WN PR

class Library {
public:

int numBooks;

std: :string * titles;
};

Valve
// *** Function A **x* Q¢

std: :string getFirstBook (Library 1) {
return (l.numBooks > 0) ? l.titles|[O0]

Peak
// *** Function B **x* ¢

std: :string getFirstBook (Library * 1) {
return (1->numBooks > 0) ? 1->titles|[O0]
C —

(OI\S\’ (‘c{:
// *** Function C **x tﬁ

std: :string getFirstBook (Library & 1) {
return (l.numBooks > 0) ? l.titles|[O0]
<

}

}

}

: "None";

: "None";

: "None";

g

K <<
z) L

Memory Management @
Local memory on the stack is managed by the computer
Heap memory allocated by new and freed by delete

Pass by value mikes a copy of the object

—1

Pass by pointer can be dereferenced to modify an object
" N\——_ —~—

Pass by reference modifies the object directly

—

Memory Management — Ownership

[k
[x]

e o

(N

OooJdJouUldkd WDNBKE

RRRRERRRRRR
OdoOUId WNRO

class Library{
public:

void addBook (Book book) ;

void removeBook (std::string title);

private:

std: :vector<Book> in;

std: : vector<Book> out;

};

Does Library‘own’Books?
A) Yes! 957%

) <

C) Not sure G4

Does my destructor need to
delete them?

S No T det

L7 L'§ rov|]'\G$) o Qv o A
;*‘ Owng ‘)Hﬁk k&iﬂkg;

\'\d\li fo elete

Memory Management — Ownership

2 Does Library ‘own’ Books?

3

4 void addBook (Book book) ; A) YES!

5

6

7 void removeBook (std::string title); B) NO!

8

o C) Not sure

10| private:

11 -

12 std: :vector<Book> in; QW/\ qu:)}\,‘ J N
13

14 el

15 std: :vector<Book> out; \) 1 /”(,6* &e\e\'(_ "q 0
16

17 C/h Canvy 4‘%%!&@
18| };

D\) L\> [a(y »”6 (7\-olo,e (LN 61:“"\ ’Ib@mh_;) &tﬂ’fut\wr Lemuvuts

o Vg

Memory Management — Ownership ﬁigﬁ

OooJdJouUldkd WDNBKE

RRRRERRRRRR
OdoOUId WNRO

class Library{

public:
// Implemented to store on heap
void addBook (Book book);

Y New BN

void removeBook (std::string title);

private:

std: :vector<Book*> in;
e

std: : vector<Book*> out;
a

Does Library ‘own’Books?
A) Yes!

B) No!
C) Not sure

Does my destructor need to
delete them?

L7 \(ts, }e\t-k M.QA\.“\\\}

Memory Management — Ownership

OooJdJouUldkd WDNBKE

RRRRERRRRRR
OdoOUId WNRO

class Library{
public:

void addBook (const Booké& book) ;

Const Rt b= &£ baoR',

void removeBook (std::string title);

private:

};

std: :vector<Book*> in;

std: : vector<Book*> out;

(

K/\Gy (@ fe bk exdS

\j T

[k
[x]

e o

Does Library‘own’Books?
A) Yes!

B)
C)

Does my destructor need to
delete them?

(7 VQ) /\ét’)- o
Alete!

o!
ot sure

The Rule of Three

If it is necessary to define any one of these three functions in a class,
it will be necessary to define all three of these functions:

1. Destructor — Called when we delete object

2. Copy Constructor — Make a new object as a copy of an existing one
—/

3. Copy assignment operator — Assign value from existing Xto Y

—

‘The Rule of Zero'

A corollary to Rule of Three

Classes that declare custom destructors, copy/move constructors or
copy/move assignment operators should deal exclusively with
ownership. Other classes should not declare custom destructors,
copy/move constructors or copy/move assignment operators

— Scott Meyers

Memory Management — Ownership @

If | don’t have to allocate things, | should not allocate them!

—D

-

Try to always use an existing class that handles ownership!
W

()7 Ve ¢ Yeor
Before you use keyword ‘new; try everything else.

—

OoodJoouldkd WPNRE

MNMNMNMMMMNNDSDEREFRRRRRPRRRRR
b WMNROCOVOJdJONOUILEd_WMNEO

class Library ({

public: '
int numBooks; \J o/ \“\7"05
std: :string * titles; Yae Ao
~Library () ; D"S Ac Por

Library(int num, std::string* list); (on
};

Library: :~Library () {
delete titles;
titles = nullptr;

}

Library: :Library(int num, std::string* list) {
numBooks = inNum;
titles = new std::string[inNum];
std: :copy(inList, inList + inNum, titles);
}

int main () {
std: :string myBooks[3] = {"A", "B", "C"};
Library L1(3, myBooks);
Library L2(L1);
return O;

stiude.

é ;iﬁ%?i:;:o;; Whats wrong with this code?
2 a0 A. Can't create L2 Library obj

2 }; pabrazy(Ant num, Stc:isteing® Hist) B. Don't delete either Library
e e J C. Deleting L1 deletes L2

1; : titles = nullptr; M.‘l\w T<§--4'L

3
~

int main() {

14|Library: :Library(int num, std::string* list) { \\

15 numBooks = inNum; L (:L ,

16 titles = new std::string[inNum]; E; \CJ
17 std: :copy (inList, inList + inNum, titles); ‘

18] 7

L L> |3

21 std: :string myBooks[3] = {"A", "B", "C"};

22| Library L1(3, myBooks); J

23| Library L2(L1); , w44 [E]

24 return O;) § xr

25)) Ts 2 bgos ﬁﬁ
w'd mvn Pessibie [H

Pointers

int a = 3;

int *p = &a; // Value: Oxfffffc62l6cc

Nadd es of

OWooJdJoUrdkdWNKE

Pointers

int a 3;

int *p = &a; // Value: Oxfffffc62l6cc A
(*p) ++;
P |oxtefefc6216cc

N dolefererce }L

OWooJdJoUrdkdWNKE

Pointers

l|lint a = 3;

2

3|lint *p = &a; // Value: Oxfffffc62l6cc A
4

5/(*p) ++; ()’

6 Ox~ o o, A

7P+t

5 4 byt

P Oxfffffcezlefd
S

Pointers PUT @

llint a = 3; \&

2

3|int *p = &a; // Value: Oxfffffc62l6cc A
4

5/(*p) ++;

6

7 pt++

8

9

int *b; P loxfee££c6216d0
/

Pointer-to-const vs constant pointer

OooJdJouUldkd WDNBKE

int x =
int y = 2;

[/ *k*k A *kkx
const int* a

3;
2

a = &y;

[/ **k* B **x

const int* b
*b:y;

[/ *k*x C *kx
int* const c

cC = &x;

[/ **k*x D *kx
int* const d

*d = x;

&X;

&X;

&y,

&y,

(const int)* a

(int) * const c

&X;

Const pointers vs const methods

1|struct BlackBox { ﬂ o \lf *
2 void update(const int & Obj) { ('60\4- Ch \,’l Oﬁ' Q%,
3 myVal = obj;
4 A R
5 _ \
6 o Stt Vglugs 3o TS
7 }
8
\
9 . - -
i vo:.dﬁ%iﬁ obj) const { (O/\\' <ha\3@ M&WV/ V7 a\))fg
11 '
2B
14 }
15
is void update(const int & obj) const {
18 M
19
20 C
21
22
22 . int myVal
25 };

The Const Keyword @

Const means that an object cannot be modified
Variables: Can't change value

Pointers: Cant change value OR can’t change pointer
Reference: Can't change value (address always fixed)

Method: Prevents non-mutable members from changing

Templates

D \\éw\:)' Spt o

\’V‘\\ 90 QN =N Qf\.xq\l

templatel.cpp

T maximum(T a, T b) {
T result;
result = (a > b) ? a : b;
return result;

SNSoobkd WN R

}

Templates in the context of Lists

List Abstract Data Type

What is the expected interface for a list?

