
Department of Computer Science

Data Structures

CS 225
Brad Solomon

August 28, 2023

C++ Review

Do you want to do research?. . .

Research Experience

Networking

Soft and Hard Skill Development

1 credit hour + GPA boost

Resume Booster

Come apply to URSA!
Undergraduate Research in Scientific Advancement

Benefits:

apply for
fall

student
run

Scan for:
• Website

• Application

• Interest form

. . . Are you a freshman or sophomore?

(Optional) Open Lab This Week

This week’s lab is open office hours

Focus is making sure your machine is setup for semester

Installation information available on website

Office Hours

The office hour calendar will be populated next week

For now, please use Discord or Piazza

You can also stop by my regular office hours!

Thursday, 11 AM — 12 PM

Siebel 2233

Testing a ‘Clicker’ Set-up!

Join Code: 225

Have you signed up to take exam 0?

A) Yes!

B) No!

https://clicker.cs.illinois.edu/

You can participate by going to website:

https://clicker.cs.illinois.edu/

Exam 0 (9/4 — 9/6)

An introduction to CBTF exam environment / expectations

Quiz on foundational knowledge from all pre-reqs

Practice questions can be found on PL

Topics covered can be found on website

Registration started August 22

https://courses.engr.illinois.edu/cs225/fa2024/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

A brief high level review of C++

Brainstorm the List Abstract Data Types (ADT)

Fundamentals of Objects / Classes

Memory Management and Ownership

Pointers and Const

Encapsulation - Classes

Internal Implementation External Interface

Abstraction / organization separating:

Brainstorming a ‘Library’ class
class Library {
public:

private:

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Memory Management — Ownership

class Library{
public:
 void addBook(Book book);
 void removeBook(std::string title);

private:
 std::vector<Book> in;
 std::vector<Book> out;
};

1
2
3
4
5
6
7
8
9

Imagine I have a Library class (and hidden Book class):

Memory Management — Ownership

class Library{
public:
 void addBook(Book book);
 void removeBook(std::string title);

private:
 std::vector<Book> in;
 std::vector<Book> out;
};

1
2
3
4
5
6
7
8
9

Imagine I have a Library class:

Does my Library class ‘own’ the Books it is storing?
A) Yes! B) No! C) Not sure

Join Code: 225

Memory Management
Stack:

Heap:

Ex:

Local variable storage

Dynamic storage

Ex:

int x = 5;

int* x = new int[5];

Memory Management - Parameters
Pass by Value: A local copy of the original

Pass by Pointer to Value: An address on the heap

Pass by Reference: An alias to an existing variable

Ex: addBook(Book book)

Ex: addBook(Book* book)

Ex: addBook(Book& book)

Memory Management - Parameters

class Library {
public:
 int numBooks;
 std::string * titles;
};

// *** Function A ***
std::string getFirstBook(Library l){
 return (l.numBooks > 0) ? l.titles[0] : "None";
}

// *** Function B ***
std::string getFirstBook(Library * l){
 return(l->numBooks > 0) ? l->titles[0] : "None";
}

// *** Function C ***
std::string getFirstBook(Library & l){
 return (l.numBooks > 0) ? l.titles[0] : "None";
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Which implementation is ‘best’? Why?

Memory Management

Local memory on the stack is managed by the computer

Heap memory allocated by new and freed by delete

Pass by value makes a copy of the object

Pass by pointer can be dereferenced to modify an object

Pass by reference modifies the object directly

Memory Management — Ownership
class Library{
public:

 void addBook(Book book);

 void removeBook(std::string title);

private:

 std::vector<Book> in;

 std::vector<Book> out;

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Does Library ‘own’ Books?

Does my destructor need to
delete them?

A) Yes!
B) No!
C) Not sure

Memory Management — Ownership
class Library{
public:

 void addBook(Book book);

 void removeBook(std::string title);

private:

 std::vector<Book> in;

 std::vector<Book> out;

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Does Library ‘own’ Books?

A) Yes!
B) No!
C) Not sure

Memory Management — Ownership
class Library{
public:
 // Implemented to store on heap
 void addBook(Book book);

 void removeBook(std::string title);

private:

 std::vector<Book*> in;

 std::vector<Book*> out;

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Does Library ‘own’ Books?

Does my destructor need to
delete them?

A) Yes!
B) No!
C) Not sure

Memory Management — Ownership
class Library{
public:

 void addBook(const Book& book);

 void removeBook(std::string title);

private:

 std::vector<Book*> in;

 std::vector<Book*> out;

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Does Library ‘own’ Books?

Does my destructor need to
delete them?

A) Yes!
B) No!
C) Not sure

The Rule of Three
If it is necessary to define any one of these three functions in a class,
it will be necessary to define all three of these functions:

1. Destructor — Called when we delete object

2. Copy Constructor — Make a new object as a copy of an existing one

3. Copy assignment operator — Assign value from existing X to Y

‘The Rule of Zero'

A corollary to Rule of Three

Classes that declare custom destructors, copy/move constructors or
copy/move assignment operators should deal exclusively with
ownership. Other classes should not declare custom destructors,
copy/move constructors or copy/move assignment operators

— Scott Meyers

Memory Management — Ownership

If I don’t have to allocate things, I should not allocate them!

Before you use keyword ‘new’, try everything else.

Try to always use an existing class that handles ownership!

class Library {
public:
 int numBooks;
 std::string * titles;
 ~Library();
 Library(int num, std::string* list);
};

Library::~Library(){
 delete titles;
 titles = nullptr;
}

Library::Library(int num, std::string* list){
 numBooks = inNum;
 titles = new std::string[inNum];
 std::copy(inList, inList + inNum, titles);
}

int main(){
 std::string myBooks[3] = {"A", "B", "C"};
 Library L1(3, myBooks);
 Library L2(L1);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

class Library {
public:
 int numBooks;
 std::string * titles;
 ~Library();
 Library(int num, std::string* list);
};

Library::~Library(){
 delete titles;
 titles = nullptr;
}

Library::Library(int num, std::string* list){
 numBooks = inNum;
 titles = new std::string[inNum];
 std::copy(inList, inList + inNum, titles);
}

int main(){
 std::string myBooks[3] = {"A", "B", "C"};
 Library L1(3, myBooks);
 Library L2(L1);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Whats wrong with this code?

A. Can’t create L2 Library obj

B. Don’t delete either Library

C. Deleting L1 deletes L2

Pointers
1
2
3
4
5
6
7
8
9

int a = 3;

int *p = &a; // Value: 0xfffffc6216cc

(*p)++;

p++;

int *b;

A

P

Pointers
1
2
3
4
5
6
7
8
9

int a = 3;

int *p = &a; // Value: 0xfffffc6216cc

(*p)++;

p++;

int *b;

A 3

P 0xfffffc6216cc

Pointers
1
2
3
4
5
6
7
8
9

int a = 3;

int *p = &a; // Value: 0xfffffc6216cc

(*p)++;

p++;

int *b;

A 4

P 0xfffffc6216cc

Pointers
1
2
3
4
5
6
7
8
9

int a = 3;

int *p = &a; // Value: 0xfffffc6216cc

(*p)++;

p++;

int *b;

A 3

P 0xfffffc6216d0

Pointer-to-const vs constant pointer
int x = 3;
int y = 2;
// *** A ***
const int* a = &x;

a = &y;

// *** B ***
const int* b = &x;

*b = y;

// *** C ***
int* const c = &y;

c = &x;

// *** D ***
int* const d = &y;

*d = x;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

(const int)* a = &x;

(int)* const c = &y;

X

Y

Const pointers vs const methods
struct BlackBox {
 void update(const int & obj) {
 myVal = obj;

 obj++;
 }

 void update(int & obj) const {
 myVal = obj;

 obj++;
 }

 void update(const int & obj) const {
 myVal = obj;

 obj++;
 }

 int myVal;
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A

B

C

The Const Keyword

Const means that an object cannot be modified

Variables: Can’t change value

Pointers: Cant change value OR can’t change pointer

Reference: Can’t change value (address always fixed)

Method: Prevents non-mutable members from changing

Templates

T maximum(T a, T b) {
 T result;
 result = (a > b) ? a : b;
 return result;
}

template1.cpp
1
2
3
4
5
6
7

Templates in the context of Lists

List Abstract Data Type
What is the expected interface for a list?

