String Algorithms and Data Structures

FM Index

CS 199-225 November 4, 2024
Brad Solomon

|
UNIVERSITY OF

ILLINOIS \/

URBANA-CHAMPAIGN

Department of Computer Science

Burrows-Wheeler Transform

Reversible permutation of the characters of a string
F L

Sabaaba
aSabaab
aabas$ab

abaabas$ abas$aba abbas$aa
T abaabas BWT(T)

Ay
’Or%. baSabaa
s VbaabaSa

Sort Burrows-Wheeler
Matrix

Last
column

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform: LF Mapping

The jth occurrence of a character cin L and the ith occurrence of cin F
correspond to the same occurrence in T (i.e. have same rank)

F C
Sabaabas S abaabjas
as;;$abaab; az; Sabaab;
ajjlaba$abo aitabas$abo
azba$ab a; azba$ abla;
as))baabas$ aobaabas$
b:a$abaa b:a$abala
boaabas$ a boaaba $|ao
They're sorted by They're sorted by
right-context right-context

Any ranking we give to characters in T will match in F a@

Burrows-Wheeler Transform: LF Mapping

Another way to visualize:

F L F L F L F L F L F L F L
—> $—as
az—>b
a1—>bo
d2—>ai
ao->$
bi—az

bo—>ao

A7

T: aoboaj az bias S

\
S v

A review of ‘'F' and ‘L’

L =CGGGCC$ T =“ACGT”

How can we represent F?

Lsokd L $CCC ¢ 66

L’? Rw. \('r\?\ﬂ/\ <’\CQ>°“‘7 H/\c,_ :& e\\p\\qbc\' ot
ATO (23 ¢13 THO
/

/

Areview of F'and’l F s (ecoverdle g, L

L = CGGGCC$ 2 = “ACGT”

How can we represent F?

As a full text string: ~ F = $CCCGGG T rphied
Rafh £
gl \/ As a map<string, int>: F= {:SI: 1,C:3,G:38 A0 T
o/
e/ As a vector<int>: F=10, 3, 3,0] *

A revieow of 'F' and ‘L’

BWT(T) =aé$lppa‘

—

What row index in F contains‘e’? Q\
Fotac

What row index in L contains‘e’? @

L = BUT (T)
What row index in F contains the second ‘p’? S_
$a e) > P

o1 23 479

A review of ‘'F' and ‘L’

BWT(T) =e$1ppa

What row index in F contains‘e’? 2

What row index in L containse? 0

What row index in F contains the second ‘p’?

5

0 =0 9 Wn

09T OCT —WnN0O

FM Index @

An index combining the BWT with a few small auxiliary data structures

Core of index is first (F) and last (L) rows from BWM: ; ;
\/—_ L(,

a b€
L isthe samesizeas T 4/\ a b
a a
F can be represented as array of || integers (or g g
not stored at all!) b 3
5z
We're discarding T— we can recover it from L! O(m)

to Jet falnk

RS
S
M Index: Querying F: #

< bel,, fr was A
M E\ L/F /‘AéfF 7 F— | /q’\‘k

AA |
5 A
(Ao ~ > < E
/‘Z\T’r l > Bo We. /-(nc;wf, o
oz T B) There Vs o : y
: . H ofF matcheg
) $ D«) The
B>

)
\ T,
@ _ /\O \oca\]()/\ \ N

u

FM Index: Querying

P=B A B
A\P S Ao
§F AO A1
A A1 A>
§A2 Bo "|:£ No YV\4¥<L:47
\{ —> Bo BT > VZ | " Fq\—h .
S5 B B As) ’
1 ’ Joes,t ex st
S B: S

FM Index: Lingering Issues
)> HO\/\/ Ar e (41\145 S'\’O/Qbi (F43\~ |o<)}(u.y nzeaw_gy

FM Index: Lingering Issues

(1) Scanning for preceding (2) Need way to find where
characterin L is slow matches occurin T:
S ao S ao
ao bo do bo
ai b1 o(m) ai b1
az a1 | scan I a2 ai
as S v as S
bo a2 bo a2
b1 as b1 as
We don't store ranks! Current output: [3,4]

Location in T: [0,3]

This is where our auxiliary data structures comeiin...

FM Index: Fast rank calculations

Is there a fast way to determine which specific bs precede the as
in our range?

S ao
do bo
a b1 | o(m)
a- a1 | scan
as $v
bo a2
b1 a3

More generally, given arange in L and a character to search,
how can we quickly find all matches (and their ranks)?

FM Index: Occurrence Table

|dea: pre-calculate cumulative # as, bs in L up to every row:

£

o 9 Vo T T o ~
SIWIYo [P @
9/VQ/9/9-/‘~”>OU'

FM Index: Occurrence Table

|dea: pre-calculate cumulative # as, bs in L up to every row:

o 9 v 9 O T 9 ™=
NINININMNIN =|OT

a
1
1
1
2
2
3
4

FM Index: Occurrence Table Query: ‘aba/

7
N,
|dea: pre-calculate cumulative # as, bs in L up to every row:
\/Ody“” T)k r b &) be i ¥><» ,LIE
a F L a b
N s a1]o]E logkey
Ly .
Ok\) a b 1 1/ bvee H chaades befere fq/v7€,
a b 1 2
a a 2 2
a $ 2 z/ </— an sM\f‘YA(*
b a | 3 | 2 W 6lves #ar end of (MR
b a 4

FM Index: Occurrence Table Query: ‘aba’

|dea: pre-calculate cumulative # as, bs in L up to every row:

<« 0bs up to &including this row

<« 2 bs up to &including this row

NN‘MNU'U"NI\

S O 0 9 0 O v M
Bl WININ == —a|Y
NININ NN =T

FM Index: Occurrence Table Query: ‘aba’

|dea: pre-calculate cumulative # as, bs in L up to every row:

F L a b What values of a (including rank) should
$ a 11 o | look up next?
a b 1 1
a

a b 1 2 q 2 | S
a a 2 2 A

Q(\\ a $ @ 2 Zg(&‘ o,) >

ki ¢ b a { 3 | 2)

C b a 4 2 @ A % A (dnge

FM Index: Occurrence Table Query: ‘bb’

What two indices should | look up? What ranks did we find?

O O O T 9 9 ¥ =
o O O O \»n»n O 9 —
N | | e | oed | od | o |

B RAWN = =O T

FM Index: Occurrence Table @

An index combining the BWT with a few small auxiliary data structures

Occurrence table speeds up L lookup by implicitly storing ranks

ab

S a Tol ——
a b T

a b <_ScanisO(m) 119 Lookup is

a a work O(1) work
m |22

2 > 1 2[2]
b a 31
b a 4]2
|—|2|—|

Tableis m x | X | integers — that’s worse than a suffix array!

FM Index: Occurrence Table <

Next idea: pre-calculate # as, bs in L up to some rows, e.g. every 5th row.

Call pre-calculated rows checkpoints. A

F L a b SOne (ans da,}
$ a 1|0

a b

a b

a a

a $

b a

b a

FM Index: Occurrence Table

To resolve a lookup for a non-checkpoint row, walk to nearest checkpoint.
Use value at that checkpoint, adjusted for characters we saw along the way.

F L a b
S

1 0

‘\V/X \/\/Cf \/’\ Jro l\(areglf (lne(\'({?o'.n\‘

<l

o T 9 9 9 o
o 9 N 9 O T 9

FM Index: Occurrence Table

What goes here?
(OVA\' as Wy
And o

482

432

a
b
b

S

—7

\!
/

488

439

O OO0 Y 9 OO0 0 v v

FM Index: Occurrence Table

L a b
What goes here? a 4| 482 | 432
482 + 2 =484 b
Checkpcfnt b
above as along the way }\\
alll ™=
a
a
b
b
b
a
a
b
b 488 | 439
a
b

FM Index: Occurrence Table

What goes here?
482+2=484

Checkpoint
above as along the way

What's goes here?

\f

/

L a b
a 4| 482 | 432
b

b

N

a \\

a

b | N
b SA
a

a

b &
b 488 | 439
a

b

(57

FM Index: Occurrence Table

L a b
What goes here? a 4| 482 | 432
482 + 2 =484 b
Check Zt b
eckpoin
above as along the way }\\
al|l ™™=
What's goes here? 3
439 -2 =437 a
7
Checkpoint \
below bs along the way \ ({ L| %7

4\ If checkpoints are O(1) distance apart, lookups are O(1)

488 | 439 |v —

O o |0y 9o OO0

FM Index: Occurrence Table @

An index combining the BWT with a few small auxiliary data structures

Occurrence table speeds up L lookup by implicitly storing ranks

S a o p

a b

a b <_ScanisO(m) T

a a work m \ \

a S ‘n,s 'S a

RiE e |
° (ongYat -

|—|2|—|

Checkpoints reduce the storage costs (Still O(m) but better than SA)

FM Index: Querying

Problem 2: We don’t know where the matches areinT...

Got the same range, [3, 4], we would

P=aba have got from suffix array
F L
do 6|9
o bo 5/a$
a b 2/laaba$
Q2 >|3]a bal$
3,4
|]\33 S >|olabalaba$
/ bo a, ndex: 0, 3 4lbas
Where are b as 1lbaabas$

these?

FM Index: Suffix Array Sampling

|dea: store some suffix array elements, but not all

SA' (evens only)
6

2

0
4

0 09 N T T O —

O T 99 9 W ™M

FM Index: Suffix Array Sampling

|dea: store some suffix array elements, but not all

SA' (evens only)
6

2

\4
X

0
4

\ 4

0 O UVrY T O o —

O T 99 9 W ™M

Lookup for row 4 succeeds

Lookup for row 3 fails - SA entry was discarded

FM Index: Suffix Array Sampling

LF Mapping tells us that “a” at the end of row 3 corresponds to...

F L SA' (evens only)
S a 6
a b
a b 2
i
a S 0
b a 4
b a
A\
Dond k‘(’\dw ‘ndex.

FM Index: Suffix Array Sampling

LF Mapping tells us that “a” at the end of row 3 corresponds to...
.. a” at the beginning of row 2

F L SA' (evens only)
S a 6
‘ll\be:‘r : E > |5 9\ "f SverS ’/() ?ﬂ\L +I"OIQ
2 \a P a 01/
¢ @ S 0 ﬂ_
b a 4
b a

If saved SA values are O(1) positions apart in T, resolving index is O(1) time

FM Index: Suffix Array Sampling

Many LF-mapping steps may be required to get to a sampled row:

F L SA' (every 4th)
S a
a b
a b
Starting here -»a b-a-%.a-4 >l a
a S 0
b a 4
b a

FM Index: Suffix Array Sampling

Many LF-mapping steps may be required to get to a sampled row:

L SA' (every 4th)
a
b
b
Starting here ... a
S 0
a 4
a

FM Index: Suffix Array Sampling

Many LF-mapping steps may be required to get to a sampled row:

SA' (every 4th)

Starting here ...

FM Index: Suffix Array Sampling

Many LF-mapping steps may be required to get to a sampled row:

SA' (every 4th)

Starting here ...

FM Index: Suffix Array Sampling

Many LF-mapping steps may be required to get to a sampled row:

SA' (every 4th)

Starting here -.»a

(o ko p)

FM Index: Suffix Array Sampling

Many LF-mapping steps may be required to get to a sampled row:

SA' (every 4th)

Starting here -.»a

(o ko p)

FM Index: Suffix Array Sampling

Many LF-mapping steps may be required to get to a sampled row:

SA' (every 4th) < L a q EQ
P
© 3

| o —

Starting here ...

oY Vo
\4
o

3

Missing value = 0 (SA val at destination) + 3 (# steps to destination)

FM Index: Suffix Array Sampling @

An index combining the BWT with a few small auxiliary data structures

Stores all index positions in T with O(1) extra work to calculate

Three steps
> \}

>0
Index: 0 N Index:0+3=3

T 9 (9 9 »n
O 9 NN T T 9

Lets put all these pieces together...

FM Index: Querying

get frange()

pP=aba

nair<int, int> get frange(string c, int s, int e)

\—

nput:
string c:The char we are looking forin F
int s:The starting rank value:(

int e:The ending rank value F pr-aba L

Output: - $ ao
A pair of values (index start, index end) :0 EO
1 1
What are ¢, s, and e? #e fom a ai
/’ \! \\3 a3 $

o 0 B M
What are the output values? b: a;

[1 /ﬂ

FM Index: Querying

get frange()

get lrange()
4

FM Index: Querying

get frange() :1 : get lrange()
2 1
|as $ 1
b a2

FM Index: Querying

F
S
ao
get frange() a o get lrange()
2 1
as S 1

nair<int, int> get lrange(string c, int s, int e)

R
nput:
string c:The char we are looking forin F
“
int s:The starting index of our range
int e:The endingindex of our range F p-aba | > Bes,,
Output: S akb ao
: [l ao bo | T+
A pair of values (# occurrences start, end) S b,
1 b1
? a ar ot
What are ¢, s, and e: o s Z% e.)
L 1Y e
?
What are the output values: b- as

LOOJ’\U\) O C(Fen(e ""l\)’? < ©
N

FM Index: Querying

P=aba

F L
S ao

do b

a1 b

get frange() get lrange()

a2 ai

as S
-E I b a2
. O \ b as

/

<R
@/\‘)

(an |4 O,)

FM Index: Querying

p=aba
F L
S do
do b

get frange() get lrange()

nair<int, int> get frange(string c, int s, int e)

nput:
string c:The char we are looking forin F

int s :The starting rank value

int e:The ending rank value F p_aba |

Output: $ a0

A pair of values (index start, index end) :0 EO

1 1

What are ¢, s, and e? a a$1
as

What are t:e olutpit'vai:’ueﬁ I bo a2

564 2 as

FM Index: Querying

P=aba ’g
RN)

S ao
dao b
get frange() :; get lrange()
?)3 Look et 9
b CA()Qr “l
A

get lrange(‘a’,5,6)->[2,4]
p=aba = ——— P=aba

F L F L
S do S ao
ao bo do bo
ail b1 ail b1
az ai I a2 ai
as 3. as $
bo Q! I bo az
b as: b1 as

get frange(‘a’,2,3)->[3,4]

SA[3] = 3, SA[4] = @ --> Return {0, 3}

FM Index I
/ Moy
[T|=m,[P|=n fge P
Wy
p=aba p=aba p=aba

Q
—
S—
CoQ 999,y
9z
4/(’
Q0 9
N =
9 T
—
Q
N |[=
T

$ qas $ ds $

a: b az: b a:

as b a b as
1] (1)

Finding all matches of P occurs in Tin FM Index is O < ﬂ> time

Assignment 9: a_fmi

Learning Objective:
Construct a full FM Index

Implement exact pattern matching on a FM Index

Consider: How would you modify the provided code to handle sub-
sampling in the Occurrence Table (OT) or Suffix Array (SA)?

FM Index

Let a = fraction of rows Let b = fraction of SA
we keep elements we keep
a b SA
482 | 432
44
FM Index consists of these,
plus L and F columns
L Note: suffix tree/array didn't
have parameters like aand b
488 | 439
0

FM Index

Components of FM Index: (blue indicates what we can adjust by changing a & b)

First column (F): ~|J |integers
Last column (L): m characters
SAsample: m-aintegers, ais fraction of SA elements kept

OT Checkpoints: m-|X |- bintegers, b is fraction of tallies kept

For DNA alphabet (2 bits / nt), T=human genome, a=1/32,b=1/128:

First column (F): 16 bytes
Last column (L); 2 bits * 3 billion chars = 750 MB

SA sample: 3 billion chars * 4 bytes / 32 = ~ 400 MB
OT Checkpoints: 3 billion *4 alphabet chars *4 bytes / 128 = ~ 400 MB

Total = 1.5 GB ~0.5 bytes per input char

FM Index: Small Memory Footprint

v 6] $ $BANANA

A NA
/' /BANANA 5| AS$ ASBANAN
[3| ANAS ANASBAN
s/ \Na s/ \as 1| ANANAS ANANASB
- - 2 > Ol BANANAS BANANAS
$ / \ NA$ 4| NAS NASBANA

2

SlE NANAS NANASBA

Suffix tree Suffix array FM Index ()

> 45 GB >12GB ~ 1.5 GB \/

Suffix-Based Index Bounds

Suffix tree Suffix array FM Index

Time: Does P occur?

Time: Count k
occurrences of P

Time: Report k
locations of P

Space

Needs T?

Bytes per input
character

m=|T|,n=|P|, k=4#occurrencesof PinT

Suffix-Based Index Bounds

Suffix tree Suffix array FM Index

Time: Does P occur? O(n) O(n log m) O(n)
Time: Count k O + k) O(n Iog m) 0o(n)
occurrences of P
Time: Report k O(n + k) Onlogm+k) | O +k)
locations of P
Space O(m) O(m) O(m)
Needs T? yes yes no
Bytes per input >15 ~4 ~0.5
character

m=|T|,n=|P|, k=4#occurrencesof PinT

