String Algorithms and Data Structures

Burrows-Wheeler Transform

CS 199-225 October 28, 2024
Brad Solomon

UNIVERSITY OF ( )

ILLINOIS -

URBANA-CHAMPAIGN

Department of Computer Science




Exact pattern matching w/ indexing

There are many data structures built on suffixes

We have now seen both of these data structures

AN

h

R

M#
A
5 e
e

o )
6

v Suffix Trie
®

© @O oo

: lr@::f::' $
[s] [4] .
s

NA$

k Suffix Tree

(S} S-S Nl IE) JUSE RO Ne)

C)
AS

ANAS
ANANAS
BANANAS
NAS

NANAS

Suffix Array

SBANANA
ASBANAN
ANASBAN
ANANASB
BANANAS
NASBANA
NANASBA

FM Index



Exact pattern matching w/ indexing
OWJQ
£ O

Suffix tree Suffix array
\
T Time: Does P occur? O(I PI) ql\’l ,‘3 ’T)/

\ocationgof P ©< [p) + ’() OO Pl log 171
Space O ( m) O( Wl)

m=|T|, n=|P|, k=#occurrencesof Pin T
JR .




Exact pattern matching w/ indexing

Suffix array
Suffix tree Suffix array (Not covered)
Time: Does P occur? O(n) O(n log m) Oln +log m)
Time: Report k O + k) X on| k) O(n +1 )
locations of P nT nogm= e
\\)
Space O(m) O(m)

m=|T|, n=|P|, k=#occurrencesof Pin T




Suffix tree vs suffix array: size

The suffix array has a smaller constant factor than the tree

Peak memory usage (megabytes)

500 1000 1500 2000 2500 3000 3500

0.2 0.4 0.6 0.8 1.0

Fraction of human chromosome 1 indexed

Suffix tree: ~16 bytes per character
—

Suffix array: ~4 bytes per character

Raw text: 2 bits per character



Exact pattern matching w/ indexing
There are many data structures built on suffixes

The FM index is a compressed self-index (smaller* than original text)!

A . f \
o é\ 0 " Al $BANANA
A ‘N 5| as ASBANAN

S IR 1 I 3| Anas ANASBAN
;; b iaQ NA“:::_’,*’$ NA$ 1| ANANA$ ANANASB
s ? (; [5] ’ [<] O] BANANAS BANANAS

Q/ bé a $ NA$ 4] NAs NASBANA
$

" 4 2] NANAS NANASBA

o ® :

? Suffix Trie Suffix Tree Suffix Array kFM Indey

®

| ——

Reduced size



Exact pattern matching w/ indexing

The basis of the FM index is a transformation

T BANANAS

\

BWT(T)lANN BS$ARA

This transformation will frequently place characters together

As we explore this transformation, consider how and why!



Burrows-Wheeler Transform

Reversible permutation of the characters of a string

T BWT(T)
BANANAS € ANNBSAA

1) How to encode?
2) How to decode?

3) How is it useful for search?




Burrows-Wheeler Transform

1) Build all text rotations of the input string

abaabas$ ?27?
T

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994



Text rotations

A string is a‘rotation’ of another string if it can be reached by
wrap-around shifting the characters

abcdefs$

bcdef$a

cdefSab

defSabc
efSabcd

fSabcde
Sabcdef

(after this they
repeat)




Text Rotations

A string is a‘rotation’ of another string if it can be reached by
wrap-around shifting the characters

A
Which of these are rotations of ABCD’?

/ ¢ ) D13

BACD

A) BCDA
) &A 7 \%Q

AB(CD

7<DCA5 D) CDAB YA
0C

aB (1)



Burrows-Wheeler Transform

1) Build all text rotations of the input string

abaabas$

baaba$a
abaabas aabaS$ab

T abaSaba
baSabaa

aSabaab
Sabaaba

(after this they
repeat)

Ay
7. o
Q[‘/O
s

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994



Burrows-Wheeler Transform

1) Build all text rotations of the input string

(abaabas

Sabaaba

aSabaab

abaabas$ ngZbga
4 abaSaba

! //’%0. aabas$S$ab

%  baaba$a

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994



Burrows-Wheeler Transform

2) Sort all text rotations of the input string lexicographically
k
Sabaaba
aSabaab
aabaSab
abaabas$ abasSaba
4 abaabas
! //’Or%. baSabaa
ng VbaabaSa

Sort Burrows-Wheeler

Matrix
' —

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994



Burrows-Wheeler Transform

3) Take the last column. This is our Burrows-Wheeler Transform

Sabaaba

aSabaab

aabas$Sab

abaabas$ aba$aba abbataa
4y abaabas$
T //-O{Gf/ b a $ abaa Last BWT(T)
s vbaabaSa column
Sort Burrows-Wheeler
Matrix

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994



Burrows-Wheeler Transform

(1) Build all rotations
(2) Sort all rotations
(3) Take last column

T=cars}$ ?SLCII C(Slol
a (3 ¢ Qrslé —7
r$ Ca Caré

$(q[/7 r$ (9

() (3)




Burrows-Wheeler Transform

(1) Build all rotations
(2) Sort all rotations
(3) Take last column

T=cars$ a r 3 c rc$a

Last
vyr $ c a column




Assignment 8: a_bwt

Learning Objective:
Implement the Burrows-Wheeler Transform on text
Reverse the Burrows-Wheeler Transform to reproduce text

Consider: How can the BWT be stored smaller than the original text?




Burrows-Wheeler Transform

How to reverse the BWT?

?
e Sabaaba
aSabaab
v aabaS$Sab
abaabas$ aIgaSgbg
4, abaaba
! /’Of%. baSabaa
s baaba$a

Sort Burrows-Wheeler
Matrix

Y
Y
~

column



e dead gWT ol
Burrows-Wheeler Transform ) 7" w5 ¢

&> ¢ort
BWT(T)=r ¢ $ a T=cars$ g) Q()‘Peaf)-'
BSOS g
- é caqr Cqr$ & 4L6u/(-r
; ié 4((:' Eth\r
d /' CIY$ Q(Et(,




Burrows-Wheeler Transform

BWT(T)=r c $ a T=cars$
1) Prepend the BWT as a column  2) Sort the full matrix as rows

3) Repeat 1 and 2 until full matrix 4) Pick the row ending in‘$’

S $ ¢ $ ¢ a $ ¢ a
a ar ar S ar §
C cC a cC a r c ar




Burrows-Wheeler Transform BWT(T)=r c $ a

This works because we are storing sortedW T=cars
Just before’S’ there was an'r’,
Just before‘a’ there was an’c’,




Burrows-Wheeler Transform BWT(T)=r c $ a

This works because we are storing sorted rotations T=cars$
Just before’Sc’ there was an'r’,
Just before‘ar’ there was an‘c’,




Burrows-Wheeler Transform

The right context is the wrap-around text
‘" has right context ‘$ca’
‘c’has right context‘ar$’.

\l/..

$ ¢ a r
\Z

2 r s

c a r S

- >

J>$ca

BWT(T)=r c$ a @

T=cars$
S ¢ a
a r S
C a r
r $



Burrows-Wheeler Transform

What is the right contextof app|l e $ ?




Burrows-Wheeler Transform

What is the right contextof a pp/l e $ ? leSap

A letter always has the same right context.

© C =0 9 Wn
T =0 N0 9
-— D U o T T,
® N9 T —'5\)
"o T 0 M —
9 0 C = N0




Burrows-Wheeler Transform: T-ranking

To continue, we have to be able to uniquely identify each character
In our text.

Give each character in T a rank, equal to # times the character
occurred previously in T. Call this the T-ranking.

T abaabas$
o 0 a 2 | 2 9

Ranks aren’t explicitly stored; they are just for illustration
—




Burrows-Wheeler Transform

BWM with T-ranking:

$ ao bo a1 a2 by as
as S ao bo a1 ax b
a; a2 by az $ ao bo
az by az: $ ao bo a4
ao bo a1 a2 by az $
b1 as $ ao bo a1 a>
bo ai a2 b1 a3z $ ao



Burrows-Wheeler Transform

F L
BWM with T-ranking: $ as
das b1
ai bo
az ai
ao S
b, a2
bo do

Look at first and last columns, called Fand L



Burrows-Wheeler Transform

F
BWM with T-ranking:

as
ai
d>
do

das

ai

a2
do

Look at first and last columns, called Fand L

(and look at just the as)



Burrows-Wheeler Transform

F
BWM with T-ranking:

as
ai
d>
do

das

ai

a2
do

Look at first and last columns, called Fand L

(and look at just the as)

as occur in the same order in Fand L. As we look down columns,

in both cases we see: as, a1, a, ao



Burrows-Wheeler Transform

F
BWM with T-ranking:

Same with bs: b1, bo

bo



Burrows-Wheeler Transform: LF Mapping

F L
BWM with T-ranking: $ as
das b1
ai bo
az ai
ao S
b, a2
bo do

LF Mapping: The ith occurrence of a character cin L and the jth occurrence
of cin F correspond to the same occurrence in T (i.e. have same rank)




Burrows-Wheeler Transform: LF Mapping

Why does this work?

Sabaaba
aSabaab

Right context: ala b a S a 5
C{( aba $ ab 3 3 3 a Right context:

abaaba$q|aba$aIo

baSabaa
baaba$a

These characters have the same right contexts!

These characters are the same character! ao boai a> by az $
— - =




Burrows-Wheeler Transform: LF Mapping @

Why does this work?

_Sabaaba3 $abaaba3,\
Why are these as in as| 9 E b g a E‘ as 9 ; b g a :g‘ Why are these as in
this order relative to alada>aio aabda>abo  ihisorder relative to
each other? azbasab a a2bas abla /each other?
' laglbaaba$ aobaabaS/ '
ba$Sabaa; b:a$abajla:
boaaba$ a boaaba$|ao
They're sorted by They're sorted by
right-context right-context

Occurrences of ciin F are sorted by right-context. Same for L!

Any ranking we give to characters in T will matchin Fand L

P




Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!
— — ?
GivenBWT= as b1 bo a1 $ a2 ao

WhatisL? The B WT

Whatis F? [ ex.( 99/ 4D Cally) Sorted Drkend n Same +

$ 0>01abqo Ll E}b




Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!

Start in first row. F must have S. F L

L contains character just priorto $: as — $ — a:
a3 b1
di bo
az ai
ao S
b a2




Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!

Start in first row. F must have S. F
L contains character just priorto $: as S —
a3 ———>

Jump to row beginning with as.
L contains character just prior to as: bs.



Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!

Start in first row. F must have S. F
L contains character just priorto $: as S
as
Jump to row beginning with as. a-
L contains character just prior to as: bs. as
Repeat for b1, get az ao
b, —



Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!

Start in first row. F must have S. F
L contains character just priorto $: as S
. a3
Jump to row beginning with as. a-
L contains character just prior to as: bs.
d2 —
Repeat for b1, get az ao \
Repeat for az, get a: b,



Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!

Start in first row. F must have S. F
L contains character just priorto $: as S
as

Jump to row beginning with as.

L contains character just prior to as: b. :; <)
Repeat for b1, get az ao
Repeat for az, get a: b
Repeat for a1, get bo bo




Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!

Start in first row. F must have S. F L
L contains character just priorto $: as — $ as

o as b
Jump to row beginning with as. a bo
L contains character just prior to as: bs.

az ai

Repeat for b1, get az ao $
Repeat for az, get as b; a-
Repeat for a1, get bo bo ao
Repeat for bo, get ao
Repeat for ag, get $ (done) In reverse order,T=ao bo a1 a2 by as $




Burrows-Wheeler Transform: LF Mapping

Another way to visualize:

az—>b;
a1—>bo
d—>ai
/ )
bi—a:
bo—ao
VA
I'T. ao bo a1 az2|bi/az S
\




Assignment 8: a_bwt

Learning Objective:
Implement the Burrows-Wheeler Transform on text

Reverse the Burrows-Wheeler Transform to reproduce text

Consider: You can use either LF mapping or prepend-sort to reverse.
Which do you think would be easier to implement (or more efficient)?




Burrows-Wheeler Transform: A better ranking

Any ranking we give to characters in T will matchin Fand L

T-Rank: Order by T G—Rank: Order byh What is good about F-rank?

F L F L

S as S ao
as b1 do bo
di bo a1l b1
d>2 di d2 ai
ao S as S

b a2 b1 - )
bo do bo as




Burrows-Wheeler Transform: A better ranking
r—abbccdgs — /o P

> R
> <

What is the BWM index for my first instance of C? (Co) [0-base for answer]

3 '
a7
¢ B




Burrows-Wheeler Transform: A better ranking
T=a b b c cd3$

What is the BWM index for my first instance of C? (Co) [0-base for answer]

F
©S$

| a
> b
=b
\{C
C
d

A N T T O WOWMQO —




Burrows-Wheeler Transform: A better ranking
T=a b b c cd3$

What is the BWM index for my first instance of C? (Co) [0-base for answer]

Skip‘$’(1)
Skip ‘A’ (1)
Skip ‘B’ (2)
Look-up F[ 4]

l

Q A" n T YD N ™M
A AT T WO —




Burrows-Wheeler Transform: A better ranking

Say T has 300 As, 400 Cs, 250 Gsand 700 Tsand $ <A< C<G<T
What is the BWM index for my 100th instance of G? (Ggo) [0-base for answer]




1
Burrows-Wheeler Transform: A better ranking

Say T has 300 As, 400 Cs, 250 Gsand 700 Tsand $ <A< C<G<T
What is the BWM index for my 100th instance of G? (Ggo) [0-base for answer]

0 row starting with $ (1 row)

Kip rows starting with A (300 rows)

Kip rows starting with C (400 rows)

Kip first 99 rows starting with G (99 rows)

K

Ln N 1 N

Answer: skip 800 rows -> index 800 contains my 100th G

With a little preprocessing we can find any character in O(1) time!




FM Index

(Next week’s material)
An index combining the BWT with a few small auxiliary data structures

Core of index is first (F) and last (L) rows from BWM:

— —

ListhesamesizeasT

ST 9 O 9 W
O 09N OO ™

F can be represented as array of |2| integers (or
not stored at all!) -

0
-

We're discarding T— we can recover it from L! q

<

v
¢
o/




FM Index: Querying

Can we query like the suffix array?

Sabaaba 6|9
aSabaab 5/a$
—> aabas$Sab 2laabas$
abaSaE;’- 3labas$
abaabas$ oOlabaabas$
baSabaa 4lb as$
1/lbaabas$

bgabasa

We don’t have these columns, and we don’t haveT.
Binary search not possible.




FM Index: Querying

The BWM is a lot like the suffix array — maybe we can query the same way?

Sabaaba 6|S
aSabaab 5/a$
aabaSab 2laabas$
abaSaba 3laba$
abaabas$ Olabaaba$
baSabaa 4 ba$
baabas$a 1/baabas$

BWM(T) SA(T)




FM Index: Querying

The BWM is a lot like the suffix array — maybe we can query the same way?

S a 6|$

a b 5/a$

a b 2laaba$

a a 3laba$

a S Olabaaba$

b 2 4 ba$

b a l1lbaaba$
S

\

We don’t have these columns, and we don’t haveT.




FM Index: Querying

Look for range of rows of BWM(T) with P as prefix

Start with shortest suffix, then match successively longer suffixes

78

p=aba
F L
— S dao
OQ - i ~7 idao b
— L ; ail b
q} — S az ai
hj*l as S
I az




FM Index: Querying

Look for range of rows of BWM(T) with P as prefix

Start with shortest suffix, then match successively longer suffixes

P=aba

F L

S ao

do b
Easy to find all the rows | |a1 b
beginning with a a2 ai

IRCE S
b a:
b as




FM Index: Querying

We have rows beginning with a, now we want rows beginning with ba

pP=aba

F L

S ao

do bo

ai b1 | Look at those rows in L.
a2 ai

as S

bo a2




FM Index: Querying

We have rows beginning with a, now we want rows beginning with ba

P=aba
F L
l>o 'P 5 I
3 A
ao bo;
ai b1 <« Look at those rows in L.
a> ai bo, b1 are bs occuring just to left.
as S
Qk\) — bo a>




FM Index: Querying

We have rows beginning with a, now we want rows beginning with ba

Cor b

ol

ai b1 Look at those rows in L.

a> ai bo, b1 are bs occuring just to left.

as S as S
b
bo a> L= )Use LF Mapping. Let new bo a-
b as range delimit those bs b as
{ \
k/l g/cq)r @ ' NP?‘*‘

Wed 4
Note: We still aren't storing the characters in grey, we just know they exist.




FM Index: Querying

We have rows beginning with ba, now we seek rows beginning with aba

P=aba

F L

$ do

do bo

ai b,

a2 ai

a3 3

bo az; < @2, a3 occur just to left.
b a3




FM Index: Querying

We have rows beginning with ba, now we seek rows beginning with aba

pP=aba p=aba

F L F [
O S ao S ao
I QAo bo ao bO
2 a b; a b;
5 a2 a Use LF Mappi a- a

pping —

Y as $ as $
S bo az;:l}— a2, a3 occur just to left. bo a
G [b a3, b; as

L C§> Now we have the rows with prefix aba




FM Index: Querying

When P does not occur in T, we eventually fail to find next character in L:

P=bba
F L
S do
ao bo
ail b1
a> ai
as S

Rows with ba prefix I bo a2 }— No bs!




FM Index: Querying

Problem 1: If we scan characters in the last column, that can be slow, O(m)

\ ‘/\\“\ —
p-aba 'SL (\\) o ¥
we

F L

S ao

dao bo

a b Scan, looking for bs

az ai

as $v

bo a2




FM Index: Querying

Problem 2: We don't immediately know where the matches areinT...

Got the same range, [3, 5), we would

p=aba have got from suffix array
F L
S dao 6|9
ao bo 5/a$
ai b, \) 2laab : S
a2 ail 3lla ba
[.3_’2)\&13 S BljjOabaabaS
bo a> 4 b a S
Where are b as llbaabas$

the values?

O



Bonus Slides




Burrows-Wheeler Transform

Reversible permutation of the characters of a string

T BWT(T)
BANANAS € ANNBSAA

1) How to encode?
2) How to decode?
3) How is it useful for compression?

4) How is it useful for search?




Burrows-Wheeler Transform .. ¢ o¢ 2 0>

Tomorrow _and tomorrow_and tomorrow L/
w$wwdd__nnoooaattTmmmrrrrrrooo__ooo

It was_the best of times it was the worst of times$

s$esttssfftteww hhmmbootttt ii woeeaaressIi

“bzip”: compression w/ a BWT to better organize text



Burrows-W
\/,

J ?r?a/
[orrow_and_tomorrow_and_tomorrow$tom .|, . ..
‘ow$tomorrow_and tomorrow_and tomorr |
ow_and_tomorrow$tomorrow and tomorr ° F

ow_and tomorrow and tomorrow$tomorr
row$tomorrow_and tomorrow _and_tomor
V'r‘ow_and_’comor‘r‘owfli’comor‘r‘ow_and_’comor‘

row_and_tomorrow _and tomorrow$tomor
rrow$tomorrow _and tomorrow and tomo

Ordered by the context to the right of each character



Burrows-Wheeler Transform

[¢]
=
B

final
sorted rotations

to decompress. It achieves compression
to perform only comparisons to a depth

transformation} This section describes
transformation} We use the example and
treats the right-hand side as the most

tree for each 16 kbyte input block, enc
tree in the output stream, then encodes
turn, set $L[i]$ to be the

turn, set $R[1]$ to the

unusual data. Like the algorithm of Man
use a single set of probabilities table
using the positions of the suffixes in

value at a given point in the vector $R
we present modifications that improve t
when the block size is quite large. Ho
which codes that have not been seen in

with $ch$ appear in the {\em same order
with $chs$. In our exam
with Huffman or arithmetic coding. Bri
with figures given by Bell \cite{bell}.

~
=

In English (and most languages),
the next character in a word is
not independent of the previous.

In general, if text structured
BWT(T) more compressible

O O F-H- H- O ® F- ® ® O H-H O ® O O 0 O ®
S BB B3B8 BBBB8B88B3B8B88888

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital
Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994




Burrows-Wheeler Transform

Lets compare the SA with the BWT...

T=abaabas$

= | [OWIN [T Oy

SA(T)

Suffix Array is O(m)

Sabaaba
aSabaab
aabas$ab
abaSaba
abaabas$
baSabaa
baaba$a

BWM(T)



Burrows-Wheeler Transform

Lets compare the SA with the BWT...

T=abaabas$

= |h O |w|N (o
00N OTT O

SA(T) BWT(T)

Suffix Array is O(m) BWT is O(m)

The BWT has a better constant factor! X S be Xer Com Mgt ab\e




Burrows-Wheeler Transform

BWM is related to the suffix array

Sabaaba 69S
aSabaab 5/la$
aabas$ab 2laabas
abaSaba 3laba$
abaabas$ Olabaaba$
baSabaa 41bas$
baaba$a l'baabas$
BWM(T) SA(T)

Same order whether rows are rotations or suffixes




Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

T[SA[i] —1] if SA[] >0

BWTli] = { $ if SA[i] =0

“BWT = characters just to the left of the suffixes in the suffix array”

6|9$
5/la$
2laabas
abaabas$ 3labas$
Olabaabas$
41bas
llbaaba$
.
. T[SAli]| —1] if SA[i] >0
BWTM_{ $ if SA[i] =0



Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

TISA[] —1] if SA[i] > 0

BWTli] = { $ if SA[i] =0

7

“BWT = characters just to the left of the suffixes in the suffix array’

6|S a T[5]
5/la$ b T[4]
2laabas$ b T[1]
abaabas$ 3labas$ a T[2]
Olabaabas$ S SA[O]
4ba$ a T[3]
l'baabas$ a T[0]
T _— SA(T)

O



