String Algorithms and Data Structures Burrows-Wheeler Transform

CS 199-225 Brad Solomon October 28, 2024

Department of Computer Science

There are many data structures built on *suffixes*

We have now seen both of these data structures

oltho
6
Children

	Suffix tree	Suffix array	
Time: Does P occur?	0(17)	O(17/109/17)	
Time: Report <i>k</i> locations of P	O(14)4K)	O(1P/10g/17/1	k
Space	O(W)	O(m)	

$$m = |T|$$
, $n = |P|$, $k = \#$ occurrences of P in T

	Suffix tree	Suffix array	Suffix array (Not covered)
Time: Does P occur?	O(n)	O(n log m)	O(n + log m)
Time: Report <i>k</i> locations of P	O(n+k)	$O(n \log m + k)$	O(n + log m)
Space	O(m)	O(m)	

m = |T|, n = |P|, k = # occurrences of P in T

Suffix tree vs suffix array: size

The suffix array has a smaller constant factor than the tree

Suffix tree: ~16 bytes per character

Suffix array: ~4 bytes per character

Raw text: 2 bits per character

There are many data structures built on *suffixes*

The FM index is a compressed self-index (smaller* than original text)!

The basis of the FM index is a transformation

This transformation will frequently place characters together

As we explore this transformation, consider how and why!

Reversible permutation of the characters of a string

1) How to encode?

2) How to decode?

3) How is it useful for search?

1) Build all **text rotations** of the input string

Text rotations

A string is a 'rotation' of another string if it can be reached by wrap-around shifting the characters

```
abcdef$
 bcdef$a
   cdef$ab
    def$abc
      ef$abcd
        f $ a b c d e
         $abcdef
            (after this they
              repeat)
```

Text Rotations

A string is a 'rotation' of another string if it can be reached by wrap-around shifting the characters

Which of these are rotations of 'ABCD'?

1) Build all **text rotations** of the input string

1) Build all **text rotations** of the input string

2) Sort all **text rotations** of the input string lexicographically

3) Take the last column. This is our **Burrows-Wheeler Transform**

- (1) Build all rotations
- (2) Sort all rotations
- (3) Take last column

```
T = car$
ar$c
ar$
```

- (1) Build all rotations
- (2) Sort all rotations
- (3) Take last column

Assignment 8: a_bwt

Learning Objective:

Implement the Burrows-Wheeler Transform on text

Reverse the Burrows-Wheeler Transform to reproduce text

Consider: How can the BWT be stored *smaller* than the original text?

How to reverse the BWT?

$$BWT(T) = r c $ a$$

$$T = car$$
\$

$$BWT(T) = r c $ a$$
 $T = c a r $$

- 1) Prepend the BWT as a column 2) Sort the full matrix as rows
- 3) Repeat 1 and 2 until full matrix 4) Pick the row ending in '\$'

BWT(T) = r c \$ a

This works because we are storing sorted rotations

T = car \$

Just before '\$', there was an 'r'.

Just before 'a', there was an 'c'.

• • •

\$ c a r

ar\$ c

car\$

r \$ c a

\$

a

\$

9 1

BWT(T) = r c \$ a

This works because we are storing sorted rotations

T = car \$

Just before '\$c', there was an 'r'.

Just before 'ar', there was an 'c'.

• • •

\$	C	a	r	(\$	C
a	r	\$	C	¿ a	r
C	a	r	\$	C	a
r	\$	C	a	y r	\$

BWT(T) = r c \$ a

The **right context** is the wrap-around text

'r' has right context '\$ca'.

'c' has right context 'ar\$'.

T = car \$

\$ c a

a r \$

c a r

r \$ (

What is the right context of **a p p I e \$**?

What is the right context of a p p I e \$? I e \$ a p

A letter always has the same right context.

Burrows-Wheeler Transform: T-ranking

To continue, we have to be able to uniquely identify each character in our text.

Give each character in *T* a rank, equal to # times the character occurred previously in *T*. Call this the *T-ranking*.

Ranks aren't explicitly stored; they are just for illustration

BWM with T-ranking:

```
$ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub>
a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub>
a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub>
a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub>
a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $
b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub>
b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub>
```

BWM with T-ranking:

```
$ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub>
a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub>
a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub>
a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub>
a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $
b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub>
b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub>
```

Look at first and last columns, called F and L

BWM with T-ranking:

```
$ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub>
a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub>
a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub>
a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub>
a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $
b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub>
b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub>
```

Look at first and last columns, called F and L (and look at just the **a**s)

BWM with T-ranking:

```
$ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub>
a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub>
a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub>
a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub>
a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $
b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub>
b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub>
```

Look at first and last columns, called F and L (and look at just the **a**s)

as occur in the same order in F and L. As we look down columns, in both cases we see: $\mathbf{a_3}$, $\mathbf{a_1}$, $\mathbf{a_2}$, $\mathbf{a_0}$

BWM with T-ranking:

```
$ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub>
a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub>
a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub>
a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub>
a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $
b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub>
b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub>
```

Same with **b**s: **b**₁, **b**₀

BWM with T-ranking:

```
$ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub>
a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub>
a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub>
a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub>
a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $
b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub>
b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub>
```

LF Mapping: The i^{th} occurrence of a character c in L and the i^{th} occurrence of c in F correspond to the same occurrence in T (i.e. have same rank)

Why does this work?

```
Right context:

a b a $ a b a a b a a b a a b a a b a a b a a b a $ a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a
```

These characters have the same right contexts!

These characters are the same character!

Why does this work?

Why are these **a**s in this order relative to each other?

Occurrences of c in F are sorted by right-context. Same for L!

Any ranking we give to characters in T will match in F and L

LF Mapping can be used to recover our original text too!

Given BWT =
$$a_3 b_1 b_0 a_1 $ a_2 a_0$$

What is L? The B WT

LF Mapping can be used to recover our original text too!

Start in first row. F must have \$. L contains character just prior to \$: a₃

LF Mapping can be used to recover our original text too!

Start in first row. F must have \$. L contains character just prior to \$: a₃

Jump to row beginning with **a**₃.

L contains character just prior to **a**₃: **b**₁.

F		L
\$		a ₃
a ₃	—	b_1
a ₁		b ₀
a ₂		a ₁
a _o		\$
b ₁		a ₂
b ₀		a _o

LF Mapping can be used to recover our original text too!

Start in first row. F must have \$. L contains character just prior to \$: a₃

Jump to row beginning with **a**₃.

L contains character just prior to **a**₃: **b**₁.

Repeat for **b**₁, get **a**₂

LF Mapping can be used to recover our original text too!

Start in first row. F must have \$. L contains character just prior to \$: a₃

Jump to row beginning with a₃.

L contains character just prior to a_3 : b_1 .

Repeat for **b**₁, get **a**₂

Repeat for a₂, get a₁

LF Mapping can be used to recover our original text too!

Start in first row. F must have \$. L contains character just prior to \$: a₃

Jump to row beginning with a₃.

L contains character just prior to a_3 : b_1 .

Repeat for **b**₁, get **a**₂

Repeat for a₂, get a₁

Repeat for a₁, get b₀

F		L
\$		a ₃
a ₃		b_1
a ₁		b_0
a ₂		a ₁
a ₀		\$
b_1		a ₂
b ₀		a _o

LF Mapping can be used to recover our original text too!

Start in first row. *F* must have **\$**.

L contains character just prior to \$: a₃

Jump to row beginning with a₃.

L contains character just prior to **a**₃: **b**₁.

Repeat for **b**₁, get **a**₂

Repeat for a₂, get a₁

Repeat for a₁, get b₀

Repeat for **b**₀, get **a**₀

Repeat for **a**₀, get \$ (done)

In reverse order, $T = a_0 b_0 a_1 a_2 b_1 a_3$ \$

Another way to visualize:

Assignment 8: a_bwt

Learning Objective:

Implement the Burrows-Wheeler Transform on text

Reverse the Burrows-Wheeler Transform to reproduce text

Consider: You can use either LF mapping or prepend-sort to reverse. Which do you think would be easier to implement (or more efficient)?

Any ranking we give to characters in T will match in F and L

T-Rank: Order by T		F-Rank: Order by F	
F	L	F	L
\$	a ₃	\$	a ₀
a ₃	b ₁	a ₀	b_0
a ₁	b_0	a ₁	b ₁
a ₂	a ₁	a ₂	a ₁
a_0	\$	a ₃	\$
b_1	a ₂	b ₁	a ₂
b_0	a_0	b ₀	a ₃

What is good about F-rank?

$$T = a b b c c d $ \rightarrow \frac{14}{28}$$

What is the BWM index for my first instance of C? (C_0) [0-base for answer]

T = a b b c c d \$

What is the BWM index for my first instance of C? (C_0) [0-base for answer]

$$T = a b b c c d $$$

What is the BWM index for my first instance of C? (C_0) [0-base for answer]

```
Skip '$' (1)
Skip 'A' (1)
Skip 'B' (2)
Look-up F[ 4 ]
```


Say *T* has 300 **A**s, 400 **C**s, 250 **G**s and 700 **T**s and \$ < **A** < **C** < **G** < **T**

What is the BWM index for my 100th instance of G? (G99) [0-base for answer]

Say *T* has 300 **A**s, 400 **C**s, 250 **G**s and 700 **T**s and \$ < **A** < **C** < **G** < **T**

What is the BWM index for my 100th instance of G? (G99) [0-base for answer]

Skip row starting with \$ (1 row)

Skip rows starting with **A** (300 rows)

Skip rows starting with **C** (400 rows)

Skip first 99 rows starting with **G** (99 rows)

Answer: skip 800 rows -> index 800 contains my 100th G

With a little preprocessing we can find any character in O(1) time!

FM Index

(Next week's material)

An index combining the BWT with a few small auxiliary data structures

Core of index is *first (F)* and *last (L) rows* from BWM:

L is the same size as T

 ${\it F}$ can be represented as array of $|\Sigma|$ integers (or not stored at all!)

We're discarding *T* — we can recover it from *L*!

Can we query like the suffix array?

```
$ a b a a b a $ 5 a $ 2 a a b a $ 3 a b a $ 3 a b a $ 3 a b a $ 3 a b a $ 4 b a $ 1 b a a b a $ 1
```

We don't have these columns, and we don't have T. Binary search not possible.

The BWM is a lot like the suffix array — maybe we can query the same way?

```
$ a b a a b a a b a a b a a b a $ a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a b a a a b a a b a a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a
```

BWM(T)

```
5
a $
a aba$
a ba$
a baaba$
ba$
baaba$
```

SA(T)

The BWM is a lot like the suffix array — maybe we can query the same way?

We don't have these columns, and we don't have T.

Look for range of rows of BWM(T) with P as prefix

Start with shortest suffix, then match successively longer suffixes

Look for range of rows of BWM(T) with P as prefix

Start with shortest suffix, then match successively longer suffixes

We have rows beginning with **a**, now we want rows beginning with **ba**

```
    F
    L
    $ a b a a b a<sub>0</sub>
    a<sub>0</sub> $ a b a a b<sub>0</sub>
    a<sub>1</sub> a b a $ a b<sub>1</sub>
    a<sub>2</sub> b a $ a b a<sub>1</sub>
    a<sub>3</sub> b a a b a $
    b<sub>0</sub> a $ a b a a<sub>2</sub>
    b<sub>1</sub> a a b a $ a<sub>3</sub>
```

We have rows beginning with **a**, now we want rows beginning with **ba**

We have rows beginning with **a**, now we want rows beginning with **ba**

Note: We still aren't storing the characters in grey, we just know they exist.

We have rows beginning with **ba**, now we seek rows beginning with **aba**

```
    P = aba
    F
    $ a b a a b a<sub>0</sub>
    a<sub>0</sub> $ a b a a b<sub>0</sub>
    a<sub>1</sub> a b a $ a b<sub>1</sub>
    a<sub>2</sub> b a $ a b a<sub>1</sub>
    a<sub>3</sub> b a a b a $
    b<sub>0</sub> a $ a b a a<sub>2</sub>
    b<sub>1</sub> a a b a $ a<sub>2</sub>
    a<sub>2</sub> b a $ a b a a<sub>2</sub>
    a<sub>3</sub> b a a b a $ a<sub>2</sub>
    a<sub>4</sub> a<sub>3</sub> occur just to left.
```

We have rows beginning with **ba**, now we seek rows beginning with **aba**

When *P* does not occur in *T*, we eventually fail to find next character in *L*:

Problem 1: If we *scan* characters in the last column, that can be slow, O(m)

```
we 145t did in Pink "
     P = aba
$ a b a a b a<sub>0</sub>
a_0 $ a b a a b_0
a<sub>1</sub> a b a $ a b<sub>1</sub>
                       Scan, looking for bs
a<sub>2</sub> b a $ a b a<sub>1</sub>
a<sub>3</sub> baaba $
b_0 a $ a b a a_2
b<sub>1</sub> a a b a $ a<sub>3</sub>
```


Problem 2: We don't immediately know where the matches are in T...

P =aba Got the same range, [3, 5), we would have got from suffix array

Bonus Slides

Reversible permutation of the characters of a string

- 1) How to encode?
- 2) How to decode?
- 3) How is it useful for compression?
- 4) How is it useful for search?

M31603 _ 203

Tomorrow_and_tomorrow_and_tomorrow

w\$wwdd__nnoooaattTmmmrrrrrrooo__ooo

It_was_the_best_of_times_it_was_the_worst_of_times\$

s\$esttssfftteww_hhmmbootttt_ii__woeeaaressIi____

"bzip": compression w/ a BWT to better organize text

orrow and tomorrow and tomorrow\$tom ow\$tomorrow and tomorrow and tomorr ow and tomorrow\$tomorrow and tomorr ow and tomorrow and tomorrow\$tomorr row\$tomorrow and tomorrow and tomor row_and_tomorrow\$tomorrow_and_tomor row and tomorrow and tomorrow\$tomor rrow\$tomorrow and tomorrow and tomo

Ordered by the *context* to the *right* of each character

In English (and most languages), the next character in a word is not independent of the previous.

In general, if text structured BWT(T) more compressible

final char (L)	sorted rotations
a	n to decompress. It achieves compression
0	n to perform only comparisons to a depth
0	n transformation} This section describes
0	n transformation} We use the example and
0	n treats the right-hand side as the most
a	n tree for each 16 kbyte input block, enc
a	n tree in the output stream, then encodes
i	n turn, set \$L[i]\$ to be the
i	n turn, set \$R[i]\$ to the
0	n unusual data. Like the algorithm of Man
a	n use a single set of probabilities table
е	n using the positions of the suffixes in
i	n value at a given point in the vector \$R
е	n we present modifications that improve t
е	n when the block size is quite large. Ho
i	n which codes that have not been seen in
i	n with \$ch\$ appear in the {\em same order
i	n with \$ch\$. In our exam
0	n with Huffman or arithmetic coding. Bri
0	n with figures given by Bell~\cite{bell}.

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the sorted list of rotations of a version of this paper are shown, together with the final character of each rotation.

Lets compare the SA with the BWT...

```
T = a b a a b a $
```


Suffix Array is O(m)

```
$ a b a a b a a b a a b a a b a $ a b a $ a b a a b a $ a b a a b a $ a b a a b a a b a a b a a b a a b a $ a b a a b a $ a
```

Lets compare the SA with the BWT...

The BWT has a better constant factor!

BWM is related to the suffix array

```
$ a b a a b a a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a a b a $ a b a a b a $ a b a a b a $ a b a a b a $ a b a a b a a b a a b a $ a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a
```

Same order whether rows are rotations or suffixes

In fact, this gives us a new definition / way to construct BWT(T):

$$BWT[i] = \begin{cases} T[SA[i] - 1] & \text{if } SA[i] > 0\\ \$ & \text{if } SA[i] = 0 \end{cases}$$

"BWT = characters just to the left of the suffixes in the suffix array"

abaaba\$

6 5 a \$ 2 a a b a \$ a b a \$ 0 a b a a b a \$ b a \$ b a \$ b a a \$

Τ

$$BWT[i] = \begin{cases} T[SA[i] - 1] & \text{if } SA[i] > 0\\ \$ & \text{if } SA[i] = 0 \end{cases}$$

In fact, this gives us a new definition / way to construct BWT(T):

$$BWT[i] = \begin{cases} T[SA[i] - 1] & \text{if } SA[i] > 0\\ \$ & \text{if } SA[i] = 0 \end{cases}$$

"BWT = characters just to the left of the suffixes in the suffix array"

