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Suffix Arrays



T

Find instances of P in T

Search Index

Preprocess (index)P

≈ O( |P | )

≈ O( |T | )

Exact pattern matching w/ indexing



Exact pattern matching w/ indexing

There are many data structures built on suffixes
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Modern methods still use these today



Suffix Trie
A rooted tree storing a collection of 
suffixes as (key, value) pairs

The tree is structured such that:

Each key is “spelled out” along some path 
starting at root

Each edge is labeled with a character c ∈ Σ

For given node, at most one child edge has 
label c, for any c ∈ Σ

Each key’s value is stored at a leaf
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Suffix Tree
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T = abaaba$
A rooted tree storing a collection of 
suffixes as (key, value) pairs

The tree has many similarities to the trie but:

Each edge is labeled with a string s

For given node, at most one child edge 
starts with character c, for any c ∈ Σ

Each internal node contains >1 children



Searching a suffix tree
How efficient is search?
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Claim: To find k leaves, we have to traverse <= k-1 internal nodes



Searching a suffix tree
How efficient is search?

Base Case:

Claim: To find k leaves, we have to traverse <= k-1 internal nodes



Searching a suffix tree

Base Case: 1 internal node

Find two leaves, traverse 1 node!

How efficient is search?

Claim: To find k leaves, we have to traverse <= k-1 internal nodes



Searching a suffix tree
How efficient is search?

Claim: To find k leaves, we have to traverse <= k-1 internal nodes

Induction: Assume any tree w/ m < N leaves has at most m-1 internal nodes 

Split the N leaf tree into two subtrees with i and N-i leaves respectively

These subtrees will have i-1 and N-i-1 internal nodes (and the root is 1)

Number internal nodes = (i − 1) + (N − i − 1) + 1 = N − 1



Suffix trie vs suffix tree: bounds

Suffix trie Suffix tree

Time: Does P 
occur?

Time: Report k 
locations of P

Space

O(n)

O(n + m2)

O(m2)

m = | T |,  n = | P |,  k = # occurrences of P in T

O(n)

O(n + k)

O(m)



Suffix trees in the real world

X = ABAB Y = AAB
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Figure 1. A maximal unique matching subsequence (MUM) of 39 nt (shown
in uppercase) shared by Genome A and Genome B. Any extension of  the MUM
will result in a mismatch. By definition, an MUM does not occur anywhere else
in either genome.

the mutation. (ii) Regions of DNA where the two input sequences
have diverged by more than an SNP. (iii) Large regions of DNA
that have been inserted into one of the genomes, for example by
transposition, sequence reversal or lateral transfer from another
organism. (iv) Repeats, usually in the form of a duplication that
has occurred in one genome but not the other. The repeated
regions can appear in widely scattered locations in the input
sequences. (v) Tandem repeats, regions of repeated DNA that
might occur in immediate succession, but with different copy
numbers in the two genomes. The copy numbers do not have to
be integers; e.g., a repeat could occur 2.5 times in one genome and
4.2 times in the other.

The alignment process consists of the following steps, which
are described in more detail in subsequent sections.

(i) Perform a maximal unique match (MUM) decomposition of
the two genomes. This decomposition identifies all maximal,
unique matching subsequences in both genomes. An MUM is a
subsequence that occurs exactly once in Genome A and once in
Genome B, and is not contained in any longer such sequence.
Thus, the two character positions bounding an MUM must be
mismatches, as shown in Figure 1. The crucial principle behind
this step is the following: if a long, perfectly matching sequence
occurs exactly once in each genome, it is almost certain to be part
of the global alignment. (Note that a similar intuition is behind the
hashing method upon which FASTA and BLAST are based.)
Thus, we can build the global alignment around the MUM
alignment. Because of the assumption that the two genomes are
highly similar, we are assured that a large number of MUMs will
be identified.

MUMs on both DNA strands are identified; this allows the
system to identify sequences from one genome that appear
reversed in the other genome.

(ii) Sort the matches found in the MUM alignment, and extract the
longest possible set of matches that occur in the same order in both
genomes. This is done using a variation of the well-known algorithm
to find the LIS of a sequence of integers. Thus, we compute an
ordered MUM alignment that provides an easy and natural way to
scan the alignment from left to right.

(iii) Close the gaps in the alignment by performing local
identification of large inserts, repeats, small mutated regions,
tandem repeats and SNPs.

(iv) Output the alignment, including all the matches in the
MUM alignment as well as the detailed alignments of regions
that do not match exactly.

The system, which is called MUMmer, is packaged as three
independent modules: suffix tree construction, sorting and extraction
of the LIS, and generation of Smith–Waterman alignments for all the
regions between the MUMs. The last step can easily be replaced
with another alignment program if a user wishes. In the ensuing
sections we elaborate further on each of these steps.

Figure 2. Suffix tree for the sequence gaaccgacct. Square nodes are leaves and
represent complete suffixes. They are labeled by the starting position of the
suffix. Circular nodes represent repeated sequences and are labeled by the
length of that sequence. In this example the longest repeated sequence is acc
occurring at positions 3 and 7.

Maximal unique matching subsequence decomposition

As mentioned above, identification of MUMs is the key step in
the alignment. By identifying the sequences that occur only once
in each genome we can complete the alignment by closing the
gaps between the aligned MUMs.

The problem of finding a set of maximal unique matching
strings (subsequences) in two very long sequences is by no means
computationally trivial. The naïve algorithm for this problem will
imply matching every subsequence in Genome A with Genome
B. There are O(n2) such subsequences (where n is the sum of the
lengths of the two genomes), and each match requires approxi-
mately O(n) time using standard pattern matching methods.

Fortunately, we can employ an ingenious computational data
structure introduced by Weiner (17) called a suffix tree. An example
of a suffix tree for the string gaaccgacct is shown in Figure 2.

As the name implies, a suffix tree is a compact representation that
stores all possible suffixes of an input sequence S. A suffix is simply
a subsequence that begins at any position in the sequence and
extends to the end of the sequence. Each suffix in S can be located
by traversing a unique path in the tree from the root node to a leaf
node. In other words, each leaf node represents a unique suffix. A
sequence of length N has N suffixes, one starting at each sequence
position, so the tree must have N leaves, and therefore at most N–1
internal nodes since each internal node has at least two child nodes.
Note that each internal node in a tree corresponds to a repeated
sequence in the original genome, where the repeat number equals the
number of leaf nodes underneath that node in the tree. [Recently
suffix trees have also been used to help discover regulatory elements
in genomic yeast sequences (19). For other applications of suffix
trees to sequence analysis, see Gusfield (9).]

The simple, brute-force algorithm to construct suffix trees runs
in quadratic time; this is no faster than dynamic programming
and, as explained above, is impractical for comparing whole
genomes. However, it is possible to build a suffix tree in linear
time by clever use of sets of pointers (17,18,20,21); our system
uses McCreight’s (18) algorithm. The total size of the tree is also
linear in the sum of the lengths of the genomes in it, since there
is exactly one leaf and at most one internal node for each base, and
the sizes of these nodes are fixed. Note that the sequence label on
each edge can be represented by two integers (its length and

Genome A:
Genome B: AAGTCGCGAGGATCACCG

TCGATGCGAGGATCATTA

Suffix trees in the real world



Suffix trees in the real world: MUMmer

Kurtz, Stefan, et al. "Versatile and open software for comparing large genomes." Genome Biol 5.2 (2004): R12.

Delcher, Arthur L., et al. "Alignment of whole genomes." Nucleic Acids Research 27.11 (1999): 2369-2376.

Delcher, Arthur L., et al. "Fast algorithms for large-scale genome alignment and comparison." Nucleic Acids 
Research 30.11 (2002): 2478-2483.

http://mummer.sourceforge.net~ 4,000 citations

http://mummer.sourceforge.net


Suffix trees in the real world: MUMmer

File containing genome (T) File containing query (P)

Columns: 
1. Match index in T 
2. Match index in P 
3. Length of exact match

Indexing 
phase: ~2 
minutes

...

Matching 
phase: 
very fast

Example by Ben Langmead



Suffix trees in the real world: MUMmer

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

Fraction of human chromosome 1 indexed

Pe
ak

 m
em

or
y 

us
ag

e 
(m

eg
ab

yt
es

)

●

●

●

●

●
●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

20
40

60
80

10
0

12
0

14
0

Fraction of human chromosome 1 indexed

Ti
m

e 
(s

ec
on

ds
)

For whole chromosome 1, took 2m:14s and used 3.94 GB memory



Suffix trees in the real world: constant factor

Suffix Trees are O(|T|) but there’s a hidden constant factor at work:
MUMmer constant factor ≈ 15.76 bytes per nt

‘Raw’ two-bit encoding ≈ 2 bits per nt

Suffix tree of human genome: >45 GB 

Raw encoding of human genome: ~0.75 GB



Exact pattern matching w/ indexing

There are many data structures built on suffixes
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FM IndexSuffix TreeSuffix Trie

More efficient to store, less efficient* to use



Lexicographic Order
A systematic way of organizing strings by the content and arrangement 
of its characters



Lexicographic Order
A systematic way of organizing strings by the content and arrangement 
of its characters

ASCII Value Character

36 $

… …

48 0

… …

65 A

… …

97 a

A < B < … < ZAlphabetical Order

$ < 0 < A < aASCII Order

Strings are compared by their individual characters.



Lexicographic Order
A systematic way of organizing strings by the content and arrangement 
of its characters

Characters are compared in order from left to right

A B C D

A B A B

B B

B B B



Lexicographic Order
A systematic way of organizing strings by the content and arrangement 
of its characters

A) “beep” B) “zzz”

C) “aardvarks” D) “apples”

What is the lexicographically smallest string?



Lexicographic Order
A systematic way of organizing strings by the content and arrangement 
of its characters

A) “bah$” B) “x”

C) “bb$” D) “b$b”

What is the lexicographically smallest string?



Suffix Array

Suffix array of T is an array of integers specifying lexicographic 
(alphabetical) order of T’s suffixes

0 1 2 3 4 5 6
a b a a b a $T =



Suffix Array

SA(T) = 

m integers  

As with suffix tree, T is 
part of index
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Suffix array of T is an array of integers specifying lexicographic 
(alphabetical) order of T’s suffixes

0 1 2 3 4 5 6

Note: Red is not stored

a b a a b a $T =



vector<int> build_sarray(string T)

T: C G T G C $
C G T G C $
 G T G C $
  T G C $
   G C $
    C $

m suffixes

     $

0 1 2 3 4 5

Input: Output: 



vector<int> build_sarray(string T)

T: C G T G C $ 5

4
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C G T G C $
 G T G C $
  T G C $
   G C $
    C $

m suffixes

     $

0 1 2 3 4 5

Input: Output: 



Suffix array: build by sorting (from array)

Expected time:
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Use your favorite sort, e.g., quickSort, heapSort, insertSort, …
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Suffix array: build by sorting suffixes
Another idea: Use a sort algorithm that’s aware that the items being 
sorted are all suffixes of the same string

Original suffix array paper suggested an O(m log m) algorithm

Manber U, Myers G. "Suffix arrays: a new method for on-line string searches." 
SIAM Journal on Computing 22.5 (1993): 935-948.

Other popular O(m log m) algorithms have been suggested
Larsson NJ, Sadakane K. Faster suffix sorting. Technical Report LU-CS-TR:99-214, 
LUNDFD6/(NFCS-3140)/1-43/(1999), Department of Computer Science, Lund 
University, Sweden, 1999.

There exist several O(m) algorithms that divide-and-conquer

Kärkkäinen J, Sanders P. "Simple linear work suffix array construction." Automata, 
Languages and Programming (2003): 187-187.

Ko P, Aluru S. "Space efficient linear time construction of suffix arrays." Combinatorial 
Pattern Matching. Springer Berlin Heidelberg, 2003.



Suffix array: build by suffix tree

(a) Build suffix tree, (b) traverse in lexicographic order, (c) upon 
reaching leaf, append suffix to array
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Suffix array: build by suffix tree

(a) Build suffix tree, (b) traverse in lexicographic order, (c) upon 
reaching leaf, append suffix to array

ba

aba$
$

$a

$

aba$

ba

$

aba$

a

ba

0

3
2

5

6

4
1

6

5

2

3

0

4

1

$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $



Assignment 7: a_sarray
Learning Objective:

Construct a suffix array by sorting suffixes

Implement exact pattern matching using a suffix array

Be as efficient or inefficient as you like!

Challenge yourself: Try to build in O(m2 log m) or better.  



Searching a suffix array
To find all exact matches using a 
suffix array:
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a b a a b a $

T = abaaba$
P = baa

Starts with b?



6

5

2

3

0

4

1

$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

T = abaaba$
P = baa

Matches ba? Matches baa?

Starts with b? Matches baa?Matches ba?

Searching a suffix array
To find all exact matches using a 
suffix array:

Starts with b?
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T = abaaba$
P = baa

Return {1}

1.Recreate suffix from int value

What is our time complexity?

n = |P|
m = |T|

2.Compare each character in order

3.On mismatch, move to next suffix

Searching a suffix array
To find all exact matches using a 
suffix array:
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T = abaaba$
P = baa n = |P|
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Match here?

Match here?

Match here?

Return {1}

b a a b a $

Searching a suffix array
To find all exact matches using a 
suffix array w/ binary search:
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T = abaaba$
P = aba

Binary search match!

Return {3}!

n = |P|
m = |T|

But what about our other match?

Searching a suffix array
To find all exact matches using a 
suffix array w/ binary search:



What is our time complexity?

Assume we have k=m matches

6

5

2

3

0

4

1

$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

T = abaaba$
P = aba

Return {0,3}

No match

No match

Match

n = |P|
m = |T|

a b a a b a $

Searching a suffix array
To find all exact matches using a 
suffix array w/ binary search:

1. Pick suffixes using binary search

2. Compare suffixes as normal

3. After match, check neighbors 



How can we do better?
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Searching a suffix array



0 1 2 2 2 2 2 3 4 5

Range Search

Input: 

Output: 

Given a collection of objects, , with comparable values and an 
object of interest, , find the first instance(s) of .

C
q q ∈ C

ALL

Range of indices matching  if it exists,  otherwiseq (−1, − 1)



Binary Search: Get first match

2 3 3 3 3 4 4        if mid == q: 

            # Match case: 
            # Treat like query is larger 
            # Remember last match! 

        elif mid > q: 

            # query is smaller case 
        else: 

            # query is larger case 

     
    # Final Return Snippet 
    if saw_match: 
        return last_match 
    else: 
        return -1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Find(3)



Binary Search: Get last match

2 2 2 2 2 2 4        if mid == q: 

            # Match case: 
            # Treat like query is smaller 
            # Remember last match! 

        elif mid > q: 

            # query is smaller case 
        else: 

            # query is larger case 

     
    # Final Return Snippet 
    if saw_match: 
        return last_match 
    else: 
        return -1 
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7 
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14 
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17 
18 
19 
20 
21 
22 
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Find(2)



How can we do better?
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T = abaaba$
P = a n = |P|

m = |T|

Searching a suffix array

1. Identify the first and last 
matches to P  w/ binary search

2. Return all values in that range!
First

Last

What is our time complexity?

Assume we have k=m matches



Assignment 7: a_sarray
Learning Objective:

Construct a suffix array by sorting suffixes

Implement exact pattern matching using a suffix array

Be as efficient or inefficient as you like!

Challenge yourself: Try to search in O(n log m + k)



Suffix tree vs suffix array: size

O(m) space, like suffix tree

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

Fraction of human chromosome 1 indexed

Pe
ak

 m
em

or
y 

us
ag

e 
(m

eg
ab

yt
es

)

●

●

●

●

●
●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

20
40

60
80

10
0

12
0

14
0

Fraction of human chromosome 1 indexed
Ti

m
e 

(s
ec

on
ds

)

Is “constant factor” worse, better, same?

Suffi
x t

ree

6
5
3
1
0
4
2

$

A$

ANA$

ANANA$

BANANA$

NA$

NANA$

6
$



32-bit integers sufficient for human genome, so fits in 
~4 bytes/base ⨉ 3 billion bases ≈ 12 GB.  Suffix tree is >45 GB.
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Suffix tree vs suffix array: size
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* Can be improved to O(n + log m), (See Gusfield 7.17.4) 
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O(n log m + k)*

Suffix Array

O(n  + k)

Suffix Tree

Suffix tree vs suffix array: search



Suffix arrays in the real world: MUMmer

Kurtz, Stefan, et al. "Versatile and open software for comparing large genomes." Genome Biol 5.2 (2004): R12.

Delcher, Arthur L., et al. "Alignment of whole genomes." Nucleic Acids Research 27.11 (1999): 2369-2376.

Delcher, Arthur L., et al. "Fast algorithms for large-scale genome alignment and comparison." Nucleic Acids 
Research 30.11 (2002): 2478-2483.

http://mummer.sourceforge.net

G. Marçais et al. "MUMmer4: A fast and versatile genome alignment system." PLoS Comp Biol (2018)

~ 4,000 citations

http://mummer.sourceforge.net
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005944


Exact pattern matching w/ indexing
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FM IndexSuffix TreeSuffix Trie

Reduced size

There are many data structures built on suffixes

The FM index is a compressed self-index (smaller* than original text)!


