String Algorithms and Data Structures

Boyer-Moore

CS 199-225 September 30, 2024
Brad Solomon

(I [><& =« I
— T —
UNIVERSITY OF
ILLINOIS < ¢
/
URBANA-CHAMPAIGN X
Department of Computer Science ea \

Exact Pattern Matching w/ Z-algorithm

Pattern, P Text T

Naive ~ O(|P||T]) mz9(|P|+|T|)

~——

Find instancesof Pin T

‘instances’: An exact, full length copy

Why continue?

The Z-algorithm is: ~—"

The Z-algorithmis: O(| P| + | T'|) time

An alphabet-independent solution
The Z-algorithm is less good at:

Searching for a set of patterns (Aho-Corasick) [/
— @
Running in sub-linear* time (Boyer—Moore/;)2

Exact pattern matching w/ Boyer-Moore @

Boyer Moore preprocesses the pattern

B

P
\ \J A,\\/ "\'F)O"’ ld\\e (

Preprocess T)
~ O(|P|) &%

Boyer-Moore ~ O(|P |+ |T])

Find instances of Pin T

‘instances’: An exact, full length copy

—Ay — i Wi Yo edue nTTEst
Boyer-Moore Z —Hy & prev wok Yo cedwe g

Intuition: Learn from alignments to avoid others 14 ¢« algm

P:/c_er — to Skip Fudre vorly

T'lcarll carried the cat
Cat|===-==--ccmcecccccccccceceeaam >

0123456789..

What does this alignment tell us?

Boyer-Moore

Intuition: Learn from alignments to avoid others
P-cat

T-carl carried the cat
Cat r=--me-mccccecccccc s e e e a >

0123456789..

What does this alignment tell us?

1) Our pattern doesn’t match at this alignment
~ N\
Thereisno'r’in
‘cat’!

car
cat

Boyer-Moore

Intuition: Learn from alignments to avoid others

P: cat

T:car‘\

catl

012

1l c

345
Ca

%rried the cat

What does this alignment tell us?

2) Our pattern doesn’t match at /ater alignments

cat ‘cat’!

Boyer-Moore

Intuition: Learn from alignments to avoid others

P:cat
T-carl carried the cat
CQtl i mmecececc e e e e e e e e e e e === == >
cat skip!
cat skip!

What does this alignment tell us?

2) Our pattern doesn’t match at /ater alignments

cat ‘cat’!

Boyer-Moore

Intuition: Learn from alignments to avoid others
P-word

T:There would have been a

©123456789..

Boyer-Moore

Intuition: Learn from alignments to avoid others
P-word

T:-There would have been a

©123456789..

How many alignments can we skip?

Boyer-Moore

Intuition: Learn from alignments to avoid others

P-word /
¥
InThere would have been a
--------- WOPrd =s==-ccccecaaceaana-
©123456 9..
XXWO/‘Q
How many alignments can we skip? A s

1) Our pattern doesn’t match at this alignment

Boyer-Moore

Intuition: Learn from alignments to avoid others
P-word

T:-There would have been a

©123456789..

How many alignments can we skip? 2

2) Our pattern doesn’t match at /ater alignments

Boyer-Moore

Intuition: Learn from alignments to avoid others

P-word
T:There woulld have been a .

-------- WOPr[d ===fecccccccccccccaad»

wolrd skip!
wio rd skip!
ord

How many alignments can we skip? 2

2) Our pattern doesn’t match at /ater alignments
I: woul «— There is no‘u’in

Boyer-Moore

Intuition: Learn from alignments to avoid others
P TAGAC
I:GTAGATGGCTGATCGAGTAGCGGCAG

How many alignments can we skip?

Boyer-Moore

Intuition: Learn from alignments to avoid others
P-TAGAC

TGTAGATGGCTGATCGAGTAGCGGCG
- TAGAC =====mm==mmmmcceeceennnaa- =

X Tag acC
¥ TAGAC

XTQG— i C
T)A & AC

How mahy alignments can we skip? 3

TAGAT ~__ TherelSaTin
TAGAC "TAGAC'!

Boyer-Moore

Intuition: Learn from alignments to avoid others
P-TAGAC
I:GTAGATGGCTGATCGAGTAGCGGCAG

TAGAC skip!
TAGAC skip!

TAGAC skip!
TAGAC

How many alignments can we skip? 3

TAGAT ~__ TherelSaTin

Boyer-Moore

Intuition: Learn from alignments to avoid others
P:AABBB
I:AAABABAAAAAAAAAAAAAAAAAA

How many alignments can we skip?

Boyer-Moore

Intuition: Learn from alignments to avoid others
P-AABBB
I:AAABABAAAAAAAAAAAAAAAAAA

How many alignments can we skip? 1

AABAB ' TherelSan Ain
AARBB '‘AAABB’!

Boyer-Moore

Intuition: Learn from alignments to avoid others
P-AABBB
I:AAABABAAAAAAAAAAAAAAAAAA

AABBB skip!
AABBDB thefirst match we encounter!

Appse— —

How many alignments can we skip? 1

AABAB ' TherelSan Ain
AARBB '‘AAABB’!

Boyer-Moore: Bad Character rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or
(b) P moves past mismatched character.

ctep 1. FCCTTCTGCTACCTTTTGCGCGCGCGCGGAA
Pl pccrTTTGC

Boyer-Moore: Bad Character rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or
(b) P moves past mismatched character.

CTT@TGCTACCTTTTGCGCGCGCGCGGAA
TGC

I C
Step 1: RC@IL

Boyer-Moore: Bad Character rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or
(b) P moves past mismatched character.

Step 1: TCCTT@TGCTACCTTTTGCGCGCGCGCGGAA
P: C©1L TGC Case (a)
ctep 9. T CC TGCTACCTTTTGCGCGCGCGCGGAA
P<p. TTTTGC

Boyer-Moore: Bad Character rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or
(b) P moves past mismatched character.

Step1.T:CCTT@TGCTACCTTTTGCGCGCGCGCGGAA
PCETTTITGC Case (@)
ctep . TCCTOCTGCTACCTTTTGCGCGCGCGCGGAA

P p TCCTTTTGC

Boyer-Moore: Bad Character rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or
(b) P moves past mismatched character.

Step1.T:CCTT@TGCTACCTTTTGCGCGCGCGCGGAA
P-CCITTTTGC Case (a)
St 2.T:CC,T_~®C'GCTACCTTTTGCGCGCGCGCGGAA
P p. T CCTTTTGC
RN Case (b)
cren3. FCCTICMGCTACCTTTTGCGCGCGCGCGGAA
P23 p. "CCTTTTGC Mo T

Boyer-Moore: Bad Character rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or
(b) P moves past mismatched character. (c) If no mismatch, don't skip

Step 1- T:CCTT@TGCTACCTTTTGCGCGCGCGCGGAA
PCCITTTTGC Case (a)
. T:CCTMCTGCTACCTTTTGCGCGCGCGCGGAA
P2 b T T CTTTTGC
L Case (b)
Step 3: ECCT:I‘:&Z@_(FS_(IE:IF'?E((:ITTTTGCGCGCGCGCGGAA
. RN Case (b)
(etc) |
Step7: FCCTTCTGCTALCTTTTGCGCGCGCGCGGAA
P CTTTTGC Case (¢)
|

Boyer-Moore: Bad Character rule @

I: éCT“CTGCTACCTTTTGCGCGCGCGCGGAA

1. 5
Pl B TG

CCTTTTGC ¢pip)

CCTTTTGcs;EB
crepy. T CCTMCTGCTACCTTTTGCGCGCGCGCGGAA
PP, CCTTTTGC
CCTTTTGC skipnothing?
Step3: T© CCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P: CR2TTTTGC

CCTTTTGC skip!

Boyer-Moore: Bad Character rule

Which of the following alignments skips the most?

A)

7'..

TATAT..
TAGAC

B)

7'..

TTGAT..
TAGAC

TAGTT..

TAGAC

Boyer-Moore: Bad Character rule

Which of the following alignments skips the most?

T: TATAT... T: TTGAT...
A) Skip1 B) Skip 0
P: TAGAC P: TAGAC
T: TAGAT.. T: TAGTT...
< Skip3 D) Skip 2
P: TAGAC P: TAGAC

Mismatches (usually) skip more if occur later in string! CHQ\” \5\‘é>

Boyer-Moore: Bad Character rule improvement

Continue to test alignment from left-to-right

P-TAGAC
IPGTAGATGGCTGATCGAGTAGCGGCG

Boyer-Moore: Bad Character rule improvement

Continue to test alignment from left-to-right
... but compare characters from right to left.
P TAGAC

Right-to-left-scanning w/ BC Rule

P: word

I:There would have been a

Right-to-left-scanning w/ BCRule ¢ 4544

F:BABE
P:word
I:There would have been a
--------- WOPrd ====cccccccccccccaaay»
(......

Tyt fullple chateds ey

(an be ad P: word N There isno’l'in
‘word’!
Vhe chacader el SKiPS the fost 16 PRRNY The lesh ME_

—

(/7 (a/\ $(Up }ﬂ’“{ /Vlog\— // CGJ*\$’('\P More Then Cl\c«s 'lld [oCL

Right-to-left-scanning w/ BC Rule

P: word
T:There would have been a
--------- WOPrd ====cccccccccccccaaay»
*
&’\¢
T: woul "~
P: word There is no’l'in

‘word’!

How many alignments do we skip? 5

Right-to-left-scanning w/ BC Rule

P:-word
I'There would have been a
--------- WOPd ==---eccccccccceana-
word
word ék;y Codore
word

How many alignments do we skip? 3

Right-to-left-scanning w/ BC Rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or
(b) P moves past mismatched character. (c) If no mismatch, don't skip
— —
Ste 1,T:CCTT) GCTACCTTTTGCGCGCGCGCGGAA
PlpccTmifGe

Right-to-left-scanning w/ BC Rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or
(b) P moves past mismatched character. (c) If no mismatch, don't skip

CTACCTTTTGCGCGCGCGCGGAA

U (.-@f: Case (a)

CTTCTGCTACCTTTTGCGCGCGCGCGGAA
CTTTTGC

Right-to-left-scanning w/ BC Rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or
(b) P moves past mismatched character. (c) If no mismatch, don't skip

Step 1: ICCTTIC)TGCTACCTTTTGCGCGCGEGCGECGEGAA
P: C©IL<-T-@-C Case (a)
Step 2: T'CCfI_iTC"GCT CCTTTTGCGCGCGEGCGEGCGGAA
P2 p. v CTTTTGEC
e — - Case (b)
Step 3: TCCTTC'GCTACCTTTTGCGCGCGCGCGGAA
P CCTTTTGC

Right-to-left-scanning w/ BC Rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or
(b) P moves past mismatched character. (c) If no mismatch, don't skip

Step 1: £EC$$ ¥ggTACCTTTTGCGCGCGCGCGGAA
©\/‘<"" Case (a)

Step 2: Z)"CC:T(T:((E:(TEE@CC:CTTTTGCGCGCGCGCGGAA
" - Case (b)

Step 3: ;CCTTC' GCTAggiiliggGCGCGCGCGGAA
€nmmmmmmm——- Case (c)

Step 4: TCCTTCTGCTACCTTTTGC@CGCGCGCGGAA
P: CCTTTTIGC Case ()

Right-to-left-scanning w/ BC Rule

Step1: 1T CCTTCTGCTACCTTTTGCGCGCGCGCGGAA

Plp ceTTTTGC

Stepy: I CCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P p: CCTTTTGC

Step3: 7 CCTTCTGCTACCTTTTGCGCGCGCGCGGAA
PP CCTTTTGC

Up to step 3, we skipped 8 alignments
CCTTCTGCTAC

5 characters in T were never looked at
CCTTCTGCTAC

——— =

Right-to-left-scanning w/ BC Rule @

Learn from character comparisons to skip pointless alignments

1.When we hit a mismatch ¢, move P along until ¢

“Bad character rule”
becomes a match (or P moves past ¢)

2.Try alignments in one direction, but do character “Right-to-left
comparisons in opposite direction scanning”

How do we put the first two rules in practice?

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Exact pattern matching w/ Boyer-Moore

Boyer Moore preprocesses the pattern

Preprocess
~ O(|P])

‘ Boyer-Moore =~ O(|P|+ |T|)

Find instances of Pin T

‘instances’: An exact, full length copy

Boyer-Moore: BC rule preprocessing

Preprocessing requirestwo args: P: TCGC 2:ACGT

The goal is to produce a table which tracks skips

p
T | C|G]| C

= QO N| >

Boyer-Moore: BC rule preprocessing

Preprocessing requirestwo args: P: TCGC 2:ACGT

The goal is to produce a table which tracks skips

p
T|C| G| C [:?2?22TRP?2?2222

—A O N| >
—
&
O
M

Boyer-Moore: BC rule preprocessing

Preprocessing requirestwo args: P: TCGC 2:ACGT

The goal is to produce a table which tracks skips
p J/ AVgpd Ogreed TWS C

T| C| G| C J: ?2?22T2?2222?22?°?
P:TICGC

= Q| N| >

Boyer-Moore: BC rule preprocessing

Preprocessing requirestwo args: P: TCGC 2:ACGT

The goal is to produce a table which tracks skips
Lacst= va Ratern

P
Bod Tlclag[c| T222aPR22222
chaedl——= [Tp PiTCGC
A
2 = P
G R)
T 2 TC6
\

Boyer-Moore: BC rule preprocessing

Preprocessing requirestwo args: P: TCGC 2:ACGT

The goal is to produce a table which tracks skips

P

T |1 C| G| C J: PP?P2AR??2?2??°
3 FP: TCGC

= Q| N| >

Boyer-Moore: BC rule preprocessing

Preprocessing requirestwo args: P: TCGC 2:ACGT

The goal is to produce a table which tracks skips

vt

p T-2?2A222222°?
TTclclc] PTCGC

Alo | 11213 T22c222222?

P- TCGC
S clol|-1o]- 56

Glol| 1] -1o0 T??G??????}_—@

T 1 -1Tol 11 2] PTCGC -
.
P

Boyer-Moore: BC rule preprocessing

Preprocessing requirestwoargs: P: BABAAAB 2: AB
—— T ~—

Pattern

B|l|A|[B|A|[A]A]|B

Boyer-Moore: BC rule preprocessing

Preprocessing requirestwoargs: P: BABAAAB 2: AB
For each character p in pattern P
For each character c in alphabet 2
Find the closest previous instance of p (to the left of ¢).
[] Pattern) 7 @7/ o
B |Aa|lB|A]|A B 54 B
o |4 |C B"*B
———
110 —|
il

Boyer-Moore: BC rule preprocessing

Preprocessing requirestwoargs: P: BABAAAB 2: AB

For each character p in pattern P

For each character c in alphabet 2

Find the closest previous instance of p (to the left of ¢).
Pattern

B|l|A|[B|A|[A]A]|B

Al O|-1[O0-1

Boyer-Moore: BC rule preprocessing

Preprocessing requirestwoargs: P: BABAAAB 2: AB

For each character p in pattern P

For each character c in alphabet 2

Find the closest previous instance of p (to the left of ¢).

Pattern

gaten ¢
B A B A A A B

=_1 |-

Al O [-1 O | -11]-11]-+-1 0

2 =
B|-1]10]-1(O0 @' -1

Assignment 4: a_bmoore

Learning Objective:

Implement preprocessing of patterns with Boyer-Moore*

Observe Boyer-Moore* efficiency as a heuristic Z/

Consider: Optimal preprocessing is (| P|| 2 |). Can you code it?

/ ;/‘i

Boyer-Moore: Using the BC Table

Try alignments from left-to-right and match characters from right-to-left

When we encounter a mismatch, skip the calculated number of alignments

P U /

clc|@] TTTTMTTITTTT
3 | P:@calC

| oo -
—
N

{
Haln| >
o
N

Boyer-Moore: Using the BC Table

Try alignments from left-to-right and match characters from right-to-left

When we encounter a mismatch, skip the calculated number of alignments

P
T| C|G (c T: GGGGGGGGGG
Alol1]2]3 P: TCGC
Teyt [l o | -] 7
* @ o1 - 04—
T 0ol 1] 2

Boyer-Moore: Using the BC Table

Try alignments from left-to-right and match characters from right-to-left

When we encounter a mismatch, skip the calculated number of alignments

P J
T[CG) C| T AADCAATAGC
Al O 11 21 3 P.'TC[)GC
7(
C|0 0] - TCeC
0

Boyer-Moore: Tracking total skips

X
P
oy e e 4
A | ——T A A
“B o] A
TBBBBB ? 9\
4»4

4 A
I:BBBBBB

Boyer-Moore: Tracking total skips

P T: BBBB 7 7
Al A A Ak

Al-T[-1]-1 1

BB 77

Assignment 4: a_bmoore @

Learning Objective:
Implement preprocessing of patterns with Boyer-Moore*

Observe Boyer-Moore* efficiency as a heuristic

Consideoyer—Moore is theoretically slower than Z-algorithm.)

—

But is it slower in practice? What is our total character comparisons?

complete bonﬁect@

A better Boyer-Moore

Learn from character comparisons to skip pointless alignments

1.When we hit a mismatch ¢, move P along until ¢

“Bad character rule”
becomes a match (or P moves past ¢)

2.Try alignments in one direction, but do character “Right-to-left
comparisons in opposite direction scanning”

Isthis O(|P|+ |T])?

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Worst-Case Bad Character rule

Upon mismatch, skip alignments until (a) mismatch become
mismatched characte@f there was no mismatch, dontskip ™

Step 1:

Step 2:

Step 3:

Step 4:

(etc)

atch, or (b) P moves past

T: AAAAAAAAAAA AAAAAAAAA
P: AAA Case (c)
T AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
P: AAA Case (c)
T AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
P: AAA Case (c)
T- AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

P: AAA Case (c)

Using just bad character, O(| P || T|)

A better Boyer-Moore

The complete Boyer-Moore algorithm, with all refinements, is

O(|P|+|T|).

Refinements include:

- "strong" good suffix rule
- Galil rule

S a——

=S
We will be covering the"weak’ good suffix rule
P—

If interested in refinements, see Gusfield textbook (syllabus)
—

or contact me for details ﬁ/

“Weak” Good Suffix rule

Intuition: Learn from alignm ' rs

P ACATAC

FTACA%ACATACATGACAGTGACCA

“"ACATAC ~~=="="7==========727272°2°°

What does this alignment tell us?

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P ACATAC

T:TACAGACATACATGACAGTGACCA
"ACATAC '"""""mmmmmmmsmsmsmmmmmmemes >

We only want to look at alignments that are at least as good as
our current alignment

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P ACATAC

T:TACAGACATACATGACAGTGACCA
"ACATAC '"""""mmmmmmmsmsmsmmmmmmemes >

What does partial match (the suffix'AC’) tell us?

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another ‘AC’ somewhere in the pattern!

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P ACATAC

T'TACAGACATACATGACAGTGACCA
(ACATAC mnmmmmmmmmmmmmmsmmsnses >

ACATAC

ACATAC
ACATAC

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another ‘AC’ somewhere in the pattern!

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others

P ACATAC
I:TACAGACATACATGACAGTGACCA
"ACATAC '"""""=mm=mommsmsmmmmmmemes >
ACATAC
How many alignments do we skip? 3

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another ‘AC’ somewhere in the pattern!

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P: ATC
I:AGTAGCAGCACAGTAGCAGCTAGA

Any alignment that overlaps this region thhe text must match the
suffix! So we can look for another somewhere in the pattern!

How many alignments do we skip? a

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P: ATC
I:AGTAGCAGCACAGTAGCAGCTAGA

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another C somewhere in the pattern!

How many alignments do we skip? 2

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P: GCAGC

T-AGTIAGCAGCACAGTAGCAGCTAGA
"GCAGC '"""TTrTTmmmmosssssmmmmmses >

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another Lsomewhere in the pattern!

How many alignments do we skip?

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P GCAGC
IAGTIAGCAGCACAGTAGCAGCTAGA

GCAGC

\
How many alignments do we skip? -

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P: GCAGC

T-AGTIAGCAAGCACAGTAGCAGCTAGA
"GCAGC ""mmmTTTTTTmmmmmssmmmmmses >
GCAGC

Any alignment that overlaps this region of the text must match
the suffix ... or have a prefix-suffix partial match!

How many alignments do we skip?

“Weak” Good Suffix rule @

Let t = longest suffix match at alignment; skip until (a) we find another
instance of t or (b) P moves past t

}.

1
I: CGTGCCTACTTACTTACTTACTTACGCGAA

Step 1:
P: CTTACITTAC o . o
t occurs in its left within P
bommeeennneee t ---------- |
Step 2: T: CGTGCCITACTTACTTACTTACTTACGCGAA
P CTTACITTAC
Q | prefix of P matches a suffix of t
Step 3: T: CGTGCCTACTTACTTACTTACTTACGCGAA

CTTACTTAC

An instance of t is either a full match to the left within P
or a prefix of P matches a suffix of t

Boyer-Moore: Putting it together

How to combine bad character and good suffix rules?

T: GTTATAGCTGATCGCGGCGTAGCGGCGAA

P: ‘GTAGCGGCG
~v

How many characters does bad character skip? _ 2 characters

[]
T: GTTATAGCTGATCGCGGCGTAGCGGCGAA
P: GTAGCGGCG
T
How many characters does good suffix skip? 7 characters

Take the maximum (7)!

Boyer-Moore: Putting it together

Use bad character or good suffix rule, whichever skips more

Step 1:

Step 2:

Step 3:

Step 4:

=

o =

9 =

o =

A4

GTTATAGCGATCGCGGCGTAGCGGCGAA
P: G(:?AGCGGCG bc: 6, as: 0 bad character

— A

GTTATAGCTGATGCGGCGTAGCGGCGAA
GTAG@GGCG bc: 0, gs: 2 good suffix

/

GTTATAGCTGATGCGGCGTAGCGGCGAA

:“:GTAGCGGCG bc: 2, gs: 7 good suffix

GTTATAGCTGATCGCGGCGTAGCGGCGAA
GTAGCGGCG

Boyer-Moore: Putting it together

11 characters of T ignored completely!

T: GTTATAGCTGATCGCGGCGTAGCGGCGAA

Step 1:
R GTAGCGGCG
Step 2: T: GTTATAGCTGATCGCGGCGTAGCGGCGAA
Cop GTAGCGGCG
Step 3: F GTTATAGCTGATCGCGGCGTAGCGGCGAA
P> ;; GTAGCGGCG
T: GTTATAGCTGATCGCGGCGTAGCGGCGAA
Step4: i

GTAGCGGCG

Skipped 15 alignments

/ \

Boyer-Moore @

Learn from character comparisons to skip pointless alignments

1.When we hit a mismatch ¢, move P along until ¢

“Bad character rule”
becomes a match (or P moves past ¢)

2. Try alignments in one direction, but do character “Right-to-left
comparisons in opposite direction scanning”

3.When we move P along, make sure characters
that matched in the last alignment also match in “Good suffix rule”
the next alignment

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

