
String Algorithms and Data Structures The Z-algorithm

CS 199-225 Brad Solomon February 13, 2023

Department of Computer Science

Exact Pattern Matching w/ Z-algorithm

Find instances of P in T

'instances': An exact, full length copy

The Z-value [$Z_i(S)$]

Given a string S, $Z_i(S)$ is the length of the longest substring in S, starting at position i > 0, that matches a prefix of S.

$$Z_4(S) =$$

$$Z_5(S) = 3$$

$$Z_1(S) = 7$$

```
5:101$101011
  01$101011
  1 $ 1 0 1 0 1 1
  $101011
  101011
  01011
  1011
  011
  11
```

$$Z_1 = 3$$

$$Z_2 =$$

0	1	2	3	4	5	6	7
Α	Α	Α	Α	В	В	В	В
Α	Α	Α	Α	В	В	В	В

We track our current knowledge of S using three values: i, r, l

i gets updated every iteration (as we compute Z_i)

r gets updated when $Z_i > 0$ AND $r_{new} > r_{old}$

l gets updated whenever r is updated (it stores the index of r's Z-value)

0	1	2	3	4	5	6	7	8	9
1	0	1	\$	1	0	1	0	1	1
1	0	1	\$	1	0	1	0	1	1

0	1	2	3	4	5	6	7	8	9
1	0	1	\$	1	0	1	0	1	1
1	0	1	\$	1	0	1	0	1	1

0	1	2	3	4	5	6	7	8	9
1	0	1	\$	1	0	1	0	1	1
1	0	1	\$	1	0	1	0	1	1

0	1	2	3	4	5	6	7
Α	Α	Α	В	В	Α	Α	Α
Α	Α	Α	В	В	Α	Α	Α

The values of i, r, l tell us how much work we need to do to compute Z_i

Case 1: i > r

Ex: i = 1, r = 0, l = 0

We must compute Z_i explicitly!

0	1	2	3	4	5	6	7
Α	Α	Α	В	В	Α	Α	Α
Α	Α	Α	В	В	Α	Α	Α

The values of i, r, l tell us how much work we need to do to compute Z_i

Case 1: i > r

Ex: i = 5, r = 2, l = 1

We must compute Z_i explicitly!

0	1	2	3	4	5	6	7
Α	Α	Α	В	В	Α	Α	Α
A	Α	Α	В	В	Α	Α	Α

The values of i, r, l tell us how much work we need to do to compute Z_i

Case 2: $i \leq r$

Ex: i = 6, r = 7, l = 5

To find Z_6 , we can save time by looking up the value _____

0	1	2	3	4	5	6	7
Α	В	C	В	Α	В	C	Α
A	В	C	В	Α	В	C	Α

The values of i, r, l tell us how much work we need to do to compute Z_i

Case 2: $i \leq r$

Ex: i = 5, r = 6, l = 4

To find Z_5 , we can save time by looking up the value _____

0	1	2	3	4	5	6	7
Α	Α	В	Α	Α	Α	В	C
A	Α	В	A	Α	A	В	С

The values of i, r, l tell us how much work we need to do to compute Z_i

Case 2: $i \leq r$

Ex: i = 4, r = 4, l = 3

To find Z_4 , we can save time by looking up the value _____

Let l = 0, r = 0, for i = [1, ..., |S| - 1]:

Compute Z_i using irl:

Case 1 (i > r): Compute explicitly; update irl

Case 2 ($i \leq r$):

Use previous Z-values to avoid work

Explicitly compute only 'new' characters

How can we tell the difference between cases?

$$i = 6, r = 7, l = 5$$

0	1	2	3	4	5	6	7	8
A	Α	Α	Α	С	A	Α	Α	В
Α	А	А	А	C	Α	Α	Α	В
Α	Α	Α	Α	С	Α	A	A	В

The amount of work required depends on two pieces of information

1. # of characters at or after i that we have seen before

2. The Z-value that matches part or all of the string starting at \boldsymbol{i}

$$i = 6, r = 7, l = 5$$

0	1	2	3	4	5	6	7	8
Α	Α	Α	Α	С	Α	Α	Α	В
Α	Α	А	А	C	A	Α	Α	В
Α	Α	Α	Α	С	Α	Α	Α	В

The amount of work required depends on two pieces of information

1. # of characters at or after i that we have seen before

Call this value $|\beta|$. What is $|\beta|$ in terms of i, r, l?

$$i = 6, r = 7, l = 5$$

0	1	2	3	4	5	6	7	8
Α	Α	Α	Α	С	A	Α	Α	В
					Α			
A	Α	Α	A	С	Α	Α	Α	В

The amount of work required depends on two pieces of information

2. The Z-value that matches part or all of the string starting at \boldsymbol{i}

Call this value Z_k . What is k in terms of i, r, l?

$$i = 6, r = 7, l = 5$$

	0	1	2	3	4	5	6	7	8
	Α	Α	Α	Α	С	Α	Α	Α	В
	A	А	А	А	C	Α	Α	Α	В
$Z_k = Z_1 = 3$	A	A	Α	Α	С	Α	Α	Α	В

The amount of work required depends on two pieces of information

1. # of characters at or after i that we have seen before

$$|\beta| = 7 - 6 + 1 = 2$$

2. The Z-value that matches part or all of the string starting at i

$$k = 6 - 5 = 1$$

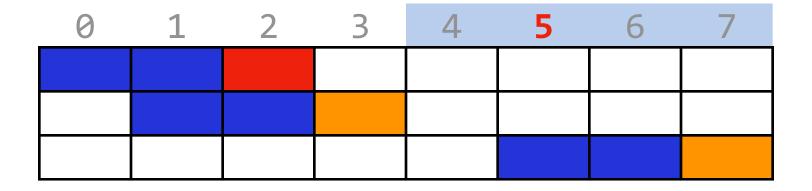
$$i = 5, r = 7, l = 4$$

0	1	2	3	4	5	6	7
Α	Α	Α	В	Α	Α	Α	В
Α	Α	Α	В	Α	Α	Α	В

Case 2a: $i \leq r, \mathbb{Z}_k < |\beta|$

$$|\beta| =$$
_____, $k =$ _____, $Z_k =$ _____

$$Z_i = \underline{\hspace{1cm}}$$


$$i = 5, r = 7, l = 4$$

0	1	2	3	4	5	6	7

Case 2a: $i \leq r, \mathbb{Z}_k < \beta$

 Z_l (defined by r, l) tells us that β matches earlier.

$$i = 5, r = 7, l = 4$$

Case 2a: $i \leq r, \mathbb{Z}_k < |\beta|$

 Z_l tells us that β matches earlier. Z_k tells us how much matches the prefix.

$$i = 5, r = 7, l = 4$$

0	1	2	3	4	5	6	7

Case 2a: $i \leq r, \mathbb{Z}_k < |\beta|$

 Z_l tells us that β matches earlier. Z_k tells us how much matches the prefix.

Because $Z_k < |\beta|$, $Z_i =$

$$i = 4, r = 4, l = 3$$

0	1	2	3	4	5	6	7
Α	Α	В	Α	Α	Α	В	C
Α	Α	В	Α	Α	Α	В	C

Case 2b: $i \leq r, Z_k = |\beta|$

$$|\beta| = \underline{\hspace{1cm}}, k = \underline{\hspace{1cm}}, Z_k = \underline{\hspace{1cm}}$$

$$Z_i =$$


$$i = 4, r = 4, l = 3$$

0	1	2	3	4	5	6	7

Case 2b: $i \leq r$, $Z_k = |\beta|$

 Z_l (defined by r, l) tells us that β matches earlier.

$$i = 4, r = 4, l = 3$$

Case 2b: $i \leq r, Z_k = |\beta|$

 Z_l (defined by r, l) tells us that β matches earlier.

 Z_k tells us how much matches the prefix... but not everything!

$$i = 4, r = 4, l = 3$$

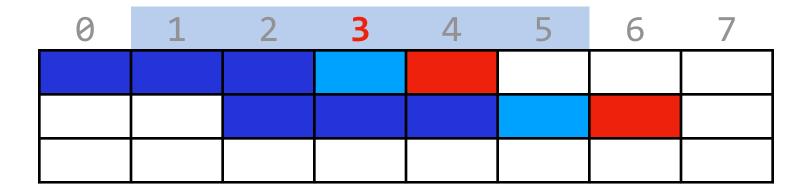
0	1	2	3	4	5	6	7
Α	Α	В	Α	Α	Α	В	C
Α	Α	В	Α	Α	Α	В	C

Case 2b: $i \leq r, Z_k = |\beta|$

$$|\beta| = 1, k = 1, Z_k = 1$$

 $Z_i = Z_k +$

$$i = 3, r = 5, l = 1$$


0	1	2	3	4	5	6	7
Α	Α	Α	Α	Α	Α	В	C
Α	Α	Α	Α	A	Α	В	C

Case 2c: $i \leq r, \mathbb{Z}_k > |\beta|$

$$|\beta| = \underline{\hspace{1cm}}, k = \underline{\hspace{1cm}}, Z_k = \underline{\hspace{1cm}}$$

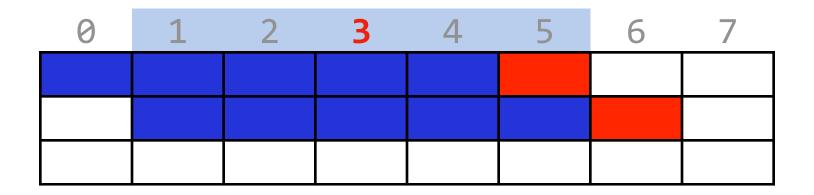
$$Z_i = \underline{\hspace{1cm}}$$

$$i = 3, r = 5, l = 1$$

Case 2c:
$$i \leq r, \mathbb{Z}_k > |\beta|$$

 Z_k tells us how much matches the prefix.

$$i = 3, r = 5, l = 1$$


0	1	2	3	4	5	6	7
			?				
					?		
						?	

Case 2c: $i \leq r, \mathbb{Z}_k > |\beta|$

 Z_l tells us that β matches earlier. Z_k tells us how much matches the prefix.

What do we know about yellow?

$$i = 3, r = 5, l = 1$$

Case 2c: $i \leq r, \mathbb{Z}_k > |\beta|$

 Z_l tells us that our entire range (eta included) matches earlier

... and that it failed to match the next character.

$$i = 3, r = 5, l = 1$$

0	1	2	3	4	5	6	7

Case 2c: $i \leq r, \mathbb{Z}_k > |\beta|$

 Z_l tells us that β matches earlier. Z_k tells us how much matches the prefix.

 Z_l also tells us that yellow and green can't be equal!

$$i = 3, r = 5, l = 1$$

0	1	2	3	4	5	6	7

Case 2c: $i \leq r, \mathbb{Z}_{k} > |\beta|$

 Z_l tells us that β is our prefix. Z_k is also a previously computed prefix.

Because $Z_k > |\beta|$, $Z_i =$ ___

Let
$$l = 0$$
, $r = 0$, for $i = [1, ..., |S| - 1]$:

Compute Z_i using irl:

Case 1 (i > r): Compute explicitly; update irl

Case 2 ($i \leq r$):

2a:
$$(Z_k < |\beta|): Z_i = Z_k$$

2b:
$$(Z_k = |\beta|)$$
: $Z_i = Z_k + explicit(r+1)$; update irl

2c:
$$(Z_k > |\beta|): Z_i = |\beta|$$

Assignment 3: a_zalg

Learning Objective:

Construct the full Z-algorithm and measure its efficiency

Demonstrate use of Z-algorithm in pattern matching

Consider: Our goal is $\theta(|P| + |T|)$. Does Z-alg search match this?

Next week:

If I gave you the pattern I was interested in ahead of time, what could you pre-compute to speed up search?

Ex: I'm going to try to look up the word 'arrays' — but you don't know what text I'm going to search through.