String Algorithms and Data Structures The Z-algorithm

CS 199-225 Brad Solomon February 13, 2023

Department of Computer Science

Exact Pattern Matching w/ Z-algorithm

'instances': An exact, full length copy

The Z-value [$Z_i(S)$]

Given a string S, $Z_i(S)$ is the length of the longest substring in S, starting at position i > 0, that matches a prefix of S.

$$Z_4(S) =$$

$$Z_5(S) = 3$$

$$Z_1(S) = 7$$

```
5:101$101011
  01$101011
  1 $ 1 0 1 0 1 1
  $101011
  101011
  01011
  1011
  011
  11
```

```
16 total char comps

7 More work than naive!
```


$$Z_1 = 3$$
$$Z_2 =$$

$$Z_2 =$$

0	1	2	3	4	5	6	
Α	Α	Α	Α	В	В	В	В
Α	Α	Α	Α	В	В	В	В

We track our current knowledge of S using three values: i, r, l

i gets updated every iteration (as we compute Z_i)

r gets updated when $Z_i > 0$ AND $r_{new} > r_{old}$

l gets updated whenever r is updated (it stores the index of r's Z-value)

The Z-Algorithm

O 1 2 3 4 5 6 7 8 9

1 0 1 \$ 1 0 1 0 1 1

1 0 1 \$ 1 0 1 1

	Start	End
i, the current index =	4	5
r, the furthest match char =	2	76-
$\it l$, the furthest reaching Z-value =	2	

0	1	2	3	4	5	6	7	8	9
1	0	1	\$	1	0	1	0	1	1
1	0	1	\$	1	0	1	0	1	1

i, the current index =

r, the furthest match char =

l, the furthest reaching Z-value =

0	1	2	3	4	5	6	7	8	9
1	0	1	\$	1	0	1	0	1	1
1	0	1	\$	1	0	1	0	1	1
						\uparrow			

	Start	End
i, the current index =	6	7
r, the furthest match char =	6	8
l, the furthest reaching Z-value =	4	6

The values of i, r, l tell us how much work we need to do to compute Z_i

Case 1:
$$i > r$$
 $\triangleright c$ fault to \bigcirc

Ex:
$$i = 1, r = 0, l = 0$$

We must compute
$$Z_i$$
 explicitly!

The values of i, r, l tell us how much work we need to do to compute Z_i

Case 1: i > r

Ex: i = 5, r = 2, l = 1

We must compute Z_i explicitly!

The values of i, r, l tell us how much work we need to do to compute Z_i

Case 2: $i \leq r$

Ex:
$$i = 6$$
, $r = 7$, $l = 5$

To find Z_6 , we can save time by looking up the value $_$

The Z-Algorithm

O 1 2 3 4 5 6 7

A B C B A B C A

A B C B A B C A

Z = 0

The values of i, r, l tell us how much work we need to do to compute Z_i

Case 2: $i \leq r$

Ex: i = 5, r = 6, l = 4

To find Z_5 , we can save time by looking up the value ______

The values of i, r, l tell us how much work we need to do to compute Z_i

Case 2: $i \leq r$

Ex:
$$i = 4$$
, $r = 4$, $l = 3$

To find Z_4 , we can save time by looking up the value $_$

Let
$$l = 0$$
, $r = 0$, for $i = [1, ..., |S| - 1]$:

Compute $\overline{Z_i}$ using irl:

Case 1 (i > r): Compute explicitly; update irl (only if match)

Case 2 ($i \leq r$):

Use previous Z-values to avoid work

Explicitly compute only 'new' characters

How can we tell the difference between cases?

$$i = 6, r = 7, l = 5$$

0	1	2	3	4	5	6	7	8
Α	Α	Α	Α	С	Α	Α	Α	В
Α	Α	А	А	C	А	Α	Α	В
A	Α	Α	Α	С	Α	Α	Α	В

The amount of work required depends on two pieces of information

1. # of characters at or after i that we have seen before

Ly these are our Z-value (all characters

2. The Z-value that matches part or all of the string starting at i

Ly what Z-value to I look 4P?

$$i = 6, r = 7, l = 5$$

0	1	2	3	4	5	6	7	8
Α	Α	Α	Α	С	Α	Α	Α	В
Α	А	Α	А	C	А	Α	Α	В
A	Α	Α	Α	С	Α	А	Α	В

The amount of work required depends on two pieces of information

1. # of characters at or after i that we have seen before

Call this value $|\beta|$. What is $|\beta|$ in terms of i, r, l?

The amount of work required depends on two pieces of information

2. The Z-value that matches part or all of the string starting at \boldsymbol{i}

Call this value Z_k . What is k in terms of i, r, l?

	0	_							O
	Α	Α	Α	Α	С	Α	Α	Α	В
	Α	Α	Α	Α	C	Α	Α	Α	В
$Z_k = Z_1 = 3$	A	А	A	A	С	Α	А	A	В

The amount of work required depends on two pieces of information

1. # of characters at or after i that we have seen before

$$|\beta| = 7 - 6 + 1 = 2$$

2. The Z-value that matches part or all of the string starting at i

$$k = 6 - 5 = 1$$

$$i = 5, r = 7, l = 4$$

0	1	2	3	4	5	6	7
Α	Α	Α	В	Α	Α	Α	В
Α	Α	Α	В	Α	Α	Α	В
					7	4	

Case 2a:
$$i \le r, Z_k < |\beta|$$

$$|\beta| = \frac{7 - 5 + 1 = 3}{2}, k = \frac{1}{2}, Z_k = \frac{3}{2}$$

$$Z_i = \frac{3}{2}, Z_k = \frac{3}{2}$$

$$i = 5, r = 7, l = 4$$

 Z_l (defined by r, l) tells us that β matches earlier.

Case 2a: $i \leq r, \mathbb{Z}_k < |\beta|$

 Z_l tells us that β matches earlier. Z_k tells us how much matches the prefix.

Case 2a:
$$i \leq r, \mathbb{Z}_k < |\beta|$$

 Z_l tells us that β matches earlier. Z_k tells us how much matches the prefix.

Because
$$Z_k < |\beta|$$
, $Z_i = Z_K$

i = 4, r = 4, l	= 3
-----------------	-----

Do This explicitly

0	1	2	3	4	5	6	7
A	A	B	Α	Α	Α	В	C
Α	Α	В	A	A	A	В	С
				•			

Case 2b:
$$i \le r$$
, $Z_k = |\beta|$

$$\frac{1}{2}, k = \frac{1}{2}, z_k = \frac{1}{2}$$

$$Z_i = \underline{\qquad}$$

$$i = 4, r = 4, l = 3$$

Case 2b:
$$i \leq r, Z_k = |\beta|$$

 Z_l (defined by r, l) tells us that β matches earlier.

 Z_l (defined by r, l) tells us that β matches earlier.

 Z_k tells us how much matches the prefix... but not everything!

$$i = 4, r = 4, l = 3$$

Case 2b:
$$i \leq r$$
, $\mathbb{Z}_k = |\beta|$

$$|\beta|=1, k=1, Z_k=1$$

$$Z_i = Z_k + explical calc$$

$$i = 3, r = 5, l = 1$$

0	1	2	3	4	5	6	7
Α	Α	Α	Α	Α	Α	В	C
Α	Α	Α	Α	Α	Α	В	C

Case 2c:
$$i \leq r, \mathbb{Z}_k > |\beta|$$

$$|\beta| = \underline{\qquad \qquad }, k = \underline{\qquad \qquad }, Z_k = \underline{\qquad \qquad }$$

$$Z_i = \frac{|B| - 3}{|B|}$$

$$i = 3, r = 5, l = 1$$

Case 2c:
$$i \leq r, \mathbb{Z}_k > |\beta|$$

 Z_k tells us how much matches the prefix.

 Z_l tells us that β matches earlier. Z_k tells us how much matches the prefix.

What do we know about yellow?

$$i = 3, r = 5, l = 1$$

$$Z_{\ell} = Z_{1} = 5$$

$$0 \quad 1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7$$

$$0 \quad 1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7$$

$$1 \quad 2 \quad 3 \quad 4, \quad 5, \quad 6, \quad 7$$

Case 2c:
$$i \leq r, Z_k > |\beta|$$

 Z_l tells us that our entire range (eta included) matches earlier

... and that it failed to match the next character.

Case 2c:
$$i \leq r, Z_k > |\beta|$$

 Z_l tells us that eta matches earlier. Z_k tells us how much matches the prefix.

 Z_l also tells us that yellow and green can't be equal!

$$i = 3, r = 5, l = 1$$

Case 2c:
$$i \leq r, Z_k > |\beta|$$

 Z_l tells us that β is our prefix. Z_k is also a previously computed prefix.

Because
$$Z_k > |\beta|$$
, $Z_i = |\beta|$

|S|-1:

Let l = 0, r = 0, for i = [1, ..., |S| - 1]:

Compute Z_i using irl:

Case 1 (i > r): Compute explicitly update irl

Case 2 ($i \leq r$):

2a:
$$(Z_k < |\beta|)(Z_i = Z_k)$$

2b: $(Z_k = |\beta|)$: $Z_i = Z_k + explicit$ (indices r + 1 vs Z_k); update irl

$$2c: (Z_k > |\beta|): Z_i = |\beta|$$

Assignment 3: a_zalg

Learning Objective:

Construct the full Z-algorithm and measure its efficiency

Demonstrate use of Z-algorithm in pattern matching

Consider: Our goal is $\theta(|P| + |T|)$. Does Z-alg search match this?

Next week:

If I gave you the pattern I was interested in ahead of time, what could you pre-compute to speed up search?

Ex: I'm going to try to look up the word 'arrays' — but you don't know what text I'm going to search through.