
Department of Computer Science

String Algorithms and Data Structures

CS 199-225
Brad Solomon

December 9, 2024

Overlap Graphs

Please fill out ICES Evaluations
Feedback is important for the development of the class

If not enough people fill it out, doesn’t actually get recorded

Learning Objectives

Define and determine stationary states

Introduce State Diagrams and Markov Chains

Introduce Hidden Markov Models

Identify how Markov chains can be used to:

Estimate probabilities of sequences

Identify more probable labels

Predict future states

String Assembly

String Assembly
Whole-genome “shotgun” sequencing first copies the input DNA:

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT
GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT
GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT
GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

Then fragments it:

String Assembly

Reconstruct this

From
these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

String Assembly

Reconstruct this

From
these

???????????????????????????????????

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

String Assembly
Input: A set of strings S = {s1, s2, …, sn} assumed to be substrings of
some underlying text T

Output: The ‘best’ approximation of T

1) Identify all possible overlaps

2) “Assemble” the best possible layout

3) Reconstruct T based on consensus

Identify all possible overlaps

CTCTAGGCC

TAGGCCCTC

X:

Y:

Given two strings, how can we find all overlaps?

Identify all possible overlaps

How many unique strings do we need to search for?

CTCTAGGCC

TAGGCCCTC

X:
T
TA
TAG
TAGG
TAGGC
TAGGCC
TAGGCCC
TAGGCCCT

Identify all possible overlaps
If we are trying to find overlap between multiple strings?

CTCTAGGCC

TAGGCCCTCCCCTCTCTA

Identify all possible overlaps

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

By convention, if a suffix includes part of both
strings, let's hide the portion after the first $.

Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

Identify all possible overlaps

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Let query = GACATA. From root, follow path labeled with query.

Identify all possible overlaps

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Blue edge implies length-3 suffix of second
string equals length-3 prefix of query

Let query = GACATA. From root, follow path labeled with query.

ATAGAC
 |||
 GACATA

Identify all possible overlaps

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Let query = ATAGAC. From root, follow path labeled with query.

Identify all possible overlaps

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Let query = ATAGAC. From root, follow path labeled with query.

Blue edge implies length-3 suffix of first
string equals length-3 prefix of query

GACATA
 |||
 ATAGAC

Identify all possible overlaps
What is the Big O for a generalized suffix tree solution?

Let be the number of strings and the length of each stringn m

Time to build generalized suffix tree:

To walk down each string in the tree:

... to find & report overlaps:

Overall:

Identify all possible overlaps
What about approximate overlaps?

CTCGGCCCTAGG
 ||| |||||
 GGCTCTAGGCCC

X:

Y:

D: x

 y

Identify all possible overlaps
How can we adjust this dynamic program for overlaps?

ϵ G G C T C T A G G C C C
ϵ
C
T
C
G
G
C
C
C
T
A
G
G

D[i, j] = min

8
<

:

D[i� 1, j] + 1
D[i, j � 1] + 1
D[i� 1, j � 1] + �(x[i� 1], y[j � 1])

ϵ G G C T C T A G G C C C
ϵ 0 ∞∞∞∞∞∞∞∞∞∞∞∞
C 0 1 2 3 4 5 6 7 8 9 10 11 12
T 0 1 2 3 4 5 6 7 8 9 10 11 12
C 0 1 2 2 3 4 5 6 7 8 9 10 11
G 0 0 1 2 2 3 4 5 6 7 8 9 10
G 0 0 0 1 2 2 3 4 5 6 7 8 9
C 0 1 1 0 1 2 3 4 5 6 7 8 9
C 0 1 2 1 1 1 2 3 4 5 6 7 8
C 0 1 2 2 2 1 2 3 4 5 6 6 7
T 0 1 2 3 2 2 1 2 3 4 5 6 7
A 0 1 2 3 3 3 2 1 2 3 4 5 6
G 0 0 1 2 3 4 3 2 1 2 3 4 5
G 0 0 0 1 2 3 4 3 2 1 2 3 4

D: x

 y

Identify all possible overlaps
How can we adjust this dynamic program for overlaps?

First row gets ∞s

First column gets 0s

Backtrace from last row
CTCGGCCCTAGG
 ||| |||||
 GGCTCTAGGCCC

X:

Y:

Identify all possible overlaps
What is the Big O for a dynamic program solution?

Let be the number of strings and the length of each stringn m

Number of overlap pairs:

Size of each matrix:

Overall:

Identify all possible overlaps
What is the Big O for a dynamic program solution?

Let be the number of strings and the length of each stringn m
Suffix Tree:

Dynamic Program:

True solutions use both! Filter with tree and solve with dynamic

 O(n2m2)

. O(nm + α)

Wajid, Bilal, and Erchin Serpedin. "Review of general algorithmic features for genome assemblers for next
generation sequencers." Genomics, proteomics & bioinformatics 10.2 (2012): 58-73.

Sohn, Jang-il, and Jin-Wu Nam. "The present and future of de novo whole-genome assembly." Briefings in
bioinformatics 19.1 (2018): 23-40.

String Assembly
Input: A set of strings S = {s1, s2, …, sn} assumed to be substrings of
some underlying text T

Output: The ‘best’ approximation of T

1) Identify all possible overlaps

2) “Assemble” the best possible layout

3) Reconstruct T based on consensus

Solved with suffix tree / dynamic programming!

Storing and assembling overlaps
How do we store all our overlaps?

Storing and assembling overlaps
How do we store all our overlaps?

Draw edge A -> B when suffix of A overlaps prefix of B

CTCGGCTCTAGCCCCTCATTTT

CTCGGCTCTAGCCCCTCATTTT

GGCTCTAGGCCCTCATTTTTT

Each node is a string

Overlap Graph Assembly

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

Our best assembly should be a path through all nodes in the graph!

Overlap Graph Assembly
Our best assembly should be a path through all nodes in the graph!

One reasonable idea: shortest common superstring (SCS)

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

Shortest Common Superstring
 AAA AAB ABB BBB BBA

Input strings

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

How can we solve SCS using graphs?

Original example courtesy of Ben Langmead

Shortest Common Superstring
 AAA AAB ABB BBB BBA

Input strings

AAB

ABB

BBABBB

AAA

-2

-1-1-1
-2

-1

-2

-2 -1

-1
-2

How can we solve SCS using graphs?

Imagine a modified overlap graph with
edge weight = - (overlap)

Original example courtesy of Ben Langmead

The SCS is a path that visits every
node once, minimizing total cost

That’s the Traveling Salesman Problem.
NP-Hard!

SCS: Greedy
Repeatedly merge pair of strings
with maximal overlap.
Stop when there’s 1 string left.
l = minimum overlap.

Input strings

Algorithm in action (l = 1):

 AAA AAB ABB BBB BBA

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

SCS: Greedy
Repeatedly merge pair of strings
with maximal overlap.
Stop when there’s 1 string left.
l = minimum overlap.

Input strings

Algorithm in action (l = 1):

 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

SCS: Greedy
Repeatedly merge pair of strings
with maximal overlap.
Stop when there’s 1 string left.
l = minimum overlap.

Input strings

Algorithm in action (l = 1):

 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

SCS: Greedy
Repeatedly merge pair of strings
with maximal overlap.
Stop when there’s 1 string left.
l = minimum overlap.

Input strings

Algorithm in action (l = 1):

 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB

ABB

BBBA

AAAB

1

2

2
11

SCS: Greedy
Repeatedly merge pair of strings
with maximal overlap.
Stop when there’s 1 string left.
l = minimum overlap.

Input strings

Algorithm in action (l = 1):

 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB
 AAABB BBBA

BBBA

AAABB

21

SCS: Greedy
Repeatedly merge pair of strings
with maximal overlap.
Stop when there’s 1 string left.
l = minimum overlap.

Input strings

Algorithm in action (l = 1):

 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB
 AAABB BBBA
 AAABBBA

AAABBBA

SCS: Greedy

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

AAABBABBB superstring, length=9

AAABBBA superstring, length=7

Problem 1: Greedy answer isn't necessarily optimal

SCS: Greedy

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
 ng_time ong_lon long_ti g_long_ a_long long_l
 ong_lon long_time g_long_ a_long long_l
 long_lon long_time g_long_ a_long
 long_lon g_long_time a_long
 long_long_time a_long
 a_long_long_time

What happened?

Greedy-SCS assembling all substrings of length k = 6 from:
a_long_long_long_time. l = 3.

SCS: Greedy
Same example, but increased the substring length, k, from 6 to 8

 long_lon ng_long_ _long_lo g_long_t ong_long g_long_l ong_time a_long_l _long_ti long_tim
 long_time long_lon ng_long_ _long_lo g_long_t ong_long g_long_l a_long_l _long_ti
 _long_time long_lon ng_long_ _long_lo g_long_t ong_long g_long_l a_long_l
 _long_time a_long_lo long_lon ng_long_ g_long_t ong_long g_long_l
 _long_time ong_long_ a_long_lo long_lon g_long_t g_long_l
 g_long_time ong_long_ a_long_lo long_lon g_long_l
 g_long_time ong_long_ a_long_lon g_long_l
 g_long_time ong_long_l a_long_lon
 g_long_time a_long_long_l
 a_long_long_long_time
 a_long_long_long_time

Got the whole thing: a_long_long_long_time

Why is this different?

SCS: Greedy
Why are substrings of length 8 long enough for Greedy-SCS to figure
out there are 3 copies of long?

SCS: Greedy
Why are substrings of length 8 long enough for Greedy-SCS to figure
out there are 3 copies of long?

a_long_long_long_time

One length-8 substring spans all three longs

g_long_l

SCS: Greedy
Problem 2: repeats foil assembly

SCS can’t handle repeats at all (the ‘shortest’ is not the best)!

More generally, algorithms that aren’t very careful
about repeats may collapse them

a_long_long_long_time

a_long_long_time

collapse

SCS: Greedy
Problem 2: repeats foil assembly

Solution: Identify repeats and ignore them!

Build contigs — contiguous fragments we can solve

a_long long_time

Fun trivia: This is particularly bad for genomics. The
human genome is ~50% repetitive!

String Assembly
Input: A set of strings S = {s1, s2, …, sn} assumed to be substrings of
some underlying text T

Output: The ‘best’ approximation of T

1) Identify all possible overlaps

2) “Assemble” the best possible layout

3) Reconstruct T based on consensus

Solved with suffix tree / dynamic programming!

NP-Hard! Heuristics have trouble with repeats

Build contigs over what we know for certain, ignore the rest

If we had another week…

tomorrow and

“tomorrow and tomorrow and tomorrow”

If ignoring the problem bothers you, there’s another class of graphs…

This graph class keeps track of the number of repeats!

If we had another week…

The De Bruijn Graph!

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB BB, BB BB, BB BB, BA

Text T:

AA

AB

BA
BB

One edge per k-mer

One node per distinct k-1-mer

This concludes CS 199-225!

Material Covered:

Z-algorithm Boyer-Moore

Suffix Trie Suffix Tree Suffix Array

BWT FM Index

Pigeonhole Principle

Edit Distance

OLC Assembly

Exact Search:

Inexact Search:

FM Index

String Assembly:

Machine Learning: Markov Chain / Hidden Markov Models

This concludes CS 199-225!
Learning Objectives:

Understand fundamental string algorithms

Experience applying data structures, algorithms, and algorithm
design principles to real world problems

Justify implementation choices based on theoretical or practical
considerations

Build a foundation for future data science projects

