String Algorithms and Data Structures Markov Chains

CS 199-225 Brad Solomon December 2, 2024

Department of Computer Science

Please fill out ICES Evaluations

Feedback is important for the development of the class

If not enough people fill it out, doesn't actually get recorded

Learning Objectives

Introduce State Diagrams and Markov Chains

Identify how Markov chains can be used to:

Estimate probabilities of sequences

Identify more probable labels

Predict future states

Define and determine stationary states

Introduce Hidden Markov Models

Modeling events with State Diagrams

A **state diagram** is a (usually weighted) directed graph where nodes are states and edges are transitions between them

These diagrams are very useful in modeling many real world scenarios!

Sequence Modeling in Biology

CATGACGTCGCGGACAACCCAGAATTGTCTTGAGCGATGGTAAGATCTAACCTCACTGC CTGGGGCTTTACTGATGTCATACCGTCTTGCACGGGGATAGAATGACGGTGCCCGTGTC ATTTTCTGAAAGTTACAGACTTCGATTAAAAAGATCGGACTGCGCGTGGGCCCGGAGAG TTTTTCGACGTGTCAAGGACTCAAGGGAATAGTTTGGCGGGAGCGTTACAGCTTCAATT CGATAAAATTCAACTACTGGTTTCGGCCTAATAGGTCACGTTTTATGTGAAATAGAGGG CCCTGGGTGTTCTATGATAAGTCCTGCTTTATAACACGGGGCGGTTAGGTTAAATGACT ATCCAAGCGCCCGCTAATTCTGTTCTGTTAATGTTCATACCAATACTCACATCACATTA AGCCCAGTCGCAAGGGTCTGCTGCTGTTGTCGACGCCTCATGTTACTCCTGGAATCTAC GGTTAAGGCGTGTGATCGACGATGCAGGTATACATCGGCTCGGACCTACAGTGGTCGAT TCGCGGTTCGGCGCGTAGTTGAGTGCGATAACCCAACCGGTGGCAAGTAGCAAGAAGAC AGACAACCTAACTAATAGTCTCTAACGGGGAATTACCTTTACCAGTCTCATGCCTCCAA CAATGATATCGCCCACAGAAAGTAGGGTCTCAGGTATCGCATACGCCGCGCCCCGGGTCC GACAGTAGAGAGCTATTGTGTAATTCAGGCTCAGCATTCATCGACCTTTCCTGTTGTGA TCTCGTCCGTAACGATCTGGGGGGCAAAACCGAATATCCGTATTCTCGTCCTACGGGTC TGCGCGTGATCGTCAGTTAAGTTAAATTAATTCAGGCTACGGTAAACTTGTAGTGAGCT ACGGGTTCGCTACAGATGAACTGAATTTATACACGGACAACTCATCGCCCATTTGGGCG AAAGTGGCAGATTAGGAGTGCTTGATCAGGTTAGCAGGTGGACTGTATCCAACAGCGCA CCAAAGCGTTGTAGTGGTCTAAGCACCCCTGAACAGTGGCGCCCATCGTTAGCGTAGTA AGGTGCGACATGGGGCCAGTTAGCCTGCCCTATATCCCTTGCACACGTTCAATAAGAGG TTTTTAAATTAGGATGCCGACCCCATCATTGGTAACTGTATGTTCATAGATATTTCTTC AGCTGACACGCAAGGGTCAACAATAATTTCTACTATCACCCCGCTGAACGACTGTCTTT CTTAGATTCGCGTCCTAACGTAGTGAGGGCCGAGTCATATCATAGATCAGGCATGAGAA CACACGAGTTGTAAACAACTTGATTGCTATACTGTAGCTACCGCAAGGATCTCCTACAT ATCTGGATCCGAGTCAGAAATACGAGTTAATGCAAATTTACGTAGACCGGTGAAAACAC AGACCGTAGTCAGAAGTGTGGCGCGCTATTCGTACCGAACCGGTGGAGTATACAGAATT AGGAGCTCGGTCCCCAATGCACGCCAAAAAAGGAATAAAGTATTCAAACTGCGCATGGT CTATTATCCATCCGAACGTTGAACCTACTTCCTCGGCTTATGCTGTCCTCAACAGTATC ACTAAGTTATCCAGATCAAGGTTTGAACGGACTCGTATGACATGTGTGACTGAACCCGG CTGTTTCAAGGCCTCTGCTTTGGTATCACTCAATATATTCAGACCAGACAAGTGGCAAA CTAGGTATTCACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGGGGCAT AAAGACTACCCTATGGATTCCTTGGAGCGGGGACAATGCAGACCGGTTACGACACAATT GGTATTATTAGCAAGACAATAAAGGACATTGCACAGAGACTTATTAGAATTCAACAAAC GTGTTGGGTCGGGCAAGTCCCCGAAGCTCGGCCAAAAGATTCGCCATGGAACCGTCTGG

Market Trends in Economics

Equilibrium State

 $1:$

 $2:$

 $3:$

 $4:$

 $5:$

6:

 $7:$

8:

1: 4/13 2: 2/13 3: 2/13 4: 1/13 5: 1/13 6: 1/13 7: 1/13 8: 1/13 **Equilibrium State**

Markov Assumption

The probability of the next state depends only on our current state

Markov Chain

A **finite Markov Chain** has a set of states *S* and a finite matrix *M*

$$
S = \{Clear, Rain, Snow\}
$$

$$
M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix}
$$

Markov Chain

Given a Markov Chain and an initial state, all subsequent states can be represented either as **a series of random states** or a transition probability.

Markov Assumption

Probability of state x_k depends only on previous state x_{k-1}

Ex: Let $x = \{C, R, C, R, R\}$

$$
P(x) = P(x_k, x_{k-1}, \ldots x_1)
$$

$$
= P(x_k | x_{k-1}, \dots x_1) P(x_{k-1}, \dots x_1)
$$

 $P(x_k | x_{k-1}, \ldots x_1) P(x_{k-1} | x_{k-2}, \ldots x_1) \ldots P(x_2 | x_1) P(x_1)$

 $P(x) \approx$

Markov Assumption

Probability of state x_k depends only on previous state x_{k-1}

Ex: Let $x = \{C, R, C, R, R\}$

$$
P(x) = P(x_k, x_{k-1}, \ldots x_1)
$$

$$
= P(x_k | x_{k-1}, \dots x_1) P(x_{k-1}, \dots x_1)
$$

 $P(x_k | x_{k-1}, \ldots x_1) P(x_{k-1} | x_{k-2}, \ldots x_1) \ldots P(x_2 | x_1) P(x_1)$

 $P(x) \approx P(x_k | x_{k-1}) P(x_{k-1} | x_{k-2}) \ldots P(x_2 | x_1) P(x_1)$

Markov Chain

Given a Markov Chain and an initial state, all subsequent states can be represented either as a series of random states or a **transition probability.**

$$
M_0 = (0.4 \quad 0.3 \quad 0.3)
$$

$$
M_1 = (.41 \quad .27 \quad .32)
$$

$$
M_2 = (0.404 \quad 0.263 \quad 0.333)
$$

 $M_3 = (0.401 \quad 0.259 \quad 0.340)$

Given a set of sequences, we can construct a model of transitions

 $P(A | A) = #$ times AA occurs / # times AX occurs $P(C | A) = # times AC occurs / # times AX occurs$ $P(G | A) = # times AG occurs / # times AX occurs$ $P(T | A) = # times AT occurs / # times AX occurs$ $P(A | C) = # times CA occurs / # times CX occurs$ (etc) *where X is any base*

Example by Ben Langmead

Given a set of sequences, we can construct a model of transitions

Example by Ben Langmead

Example by Ben Langmead >>> print(ins conds) [[0.19152248, 0.27252589, 0.39998803, 0.1359636], **A** [0.18921984, 0.35832388, 0.25467081, 0.19778547], $\begin{bmatrix} 0.17322219, 0.33142737, 0.35571338, 0.13963706 \end{bmatrix}$ $[0.09509721, 0.33836493, 0.37567927, 0.19085859]]$ **C G T** *x*i *x*i-1 **A C G T** $x = GATC$ $P(x) = P(C | T) P(T | A) P(A | G) P(G) = 0.33836493 * 0.001992$ 0.1359636 * 0.17322219 * 0.25 $P(x) = P(x_4 | x_3) P(x_3 | x_2) P(x_2 | x_1) P(x_1)$

 \Rightarrow ins_conds, \equiv = markov_chain_from_dinucs(samp)

We can use this same approach to predict a *label* in our sequences as well

CpG island: part of the genome where CG occurs particularly frequently

Example by Ben Langmead

To predict a *label* of a sequencing region, make a Markov chain for both!

Example by Ben Langmead

To predict a *label* of a sequencing region, make a Markov chain for both!

Example by Ben Langmead

Use *ratio:* P(x) from CpG model P(*x*) from Default model

To predict a *label* of a sequencing region, make a Markov chain for both!

 $S(x) = log \frac{P(x) \text{ inside CpG}}{P(x)}$ P(*x*) outside CpG Take log, get a *log ratio*:

 $log P(x) \approx log [P(X_k | X_{k-1}) P(X_{k-1} | X_{k-2}) ... P(X_2 | X_1) P(X_1)]$ $=$ log P($x_k | x_{k-1}$) + log P($x_{k-1} | x_{k-2}$) + ... $= \sum_{i=3}$ log P($x_i | x_{i-1}$) + log P(x_1) $i=2$ k **product** becomes **sum**

If inside more probable than outside, fraction is > 1 , log ratio is > 0 . Otherwise, fraction is ≤ 1 and log ratio is ≤ 0 .

To predict a *label* of a sequencing region, make a Markov chain for both!

 $S(x) = log \frac{P(x) \text{ inside CpG}}{P(x)}$ P(*x*) outside CpG Take log, get a *log ratio*:

 $log P(x) \approx log [P(X_k | X_{k-1}) P(X_{k-1} | X_{k-2}) ... P(X_2 | X_1) P(X_1)]$ $=$ log P($x_k | x_{k-1}$) + log P($x_{k-1} | x_{k-2}$) + ... $= \sum_{i=3}$ log P($x_i | x_{i-1}$) + log P(x_1) $i=2$ k **product** becomes **sum**

If inside more probable than outside, fraction is > 1 , log ratio is > 0 . Otherwise, fraction is ≤ 1 and log ratio is ≤ 0 .

A C G T

 $x = GATC$

 $P(x) = P(C | T) P(T | A) P(A | G) P(G) = 0.73036913 + 0.919763$ $P(x) = P(x_4 | x_3) P(x_3 | x_2) P(x_2 | x_1) P(x_1)$ -0.85527103 + -0.79486196

Example by Ben Langmead

Drew 1,000 100-mers from inside CpG islands and another 1,000 from outside, and calculated S(x) for all

Markov Chain Matrix

If I'm working at time 0, what is probability that I'm working at time *t*?

Claim:
$$
Pr(X_t = v | X_0 = u) = M^t[u, v]
$$

Base Case:

 $T=1$:

$$
M = \begin{pmatrix} .4 & .6 & 0 \\ .5 & 0 & .5 \end{pmatrix}
$$

Markov Chain Matrix

If I'm working at time 0, what is probability that I'm working at time *t*?

Claim:
$$
Pr(X_t = v | X_0 = u) = M^t[u, v]
$$

Base Case:

 $T=2$:

M = .4 .6 0 .1 .6 .3 .5 0 .5 Work Game Clean *M*² = .22 .6 .18 .25 .42 .33 .45 0.3 .25

Markov Chain Matrix

Claim:
$$
Pr(X_t = v | X_0 = u) = M^t[u, v]
$$

Induction:

Assume $Pr(X_{t-1} = v | X_0 = u) = M^{t-1}[u, v].$ Show holds for $Pr(X_t = w | X_0 = u) = M^t[u, w]$

By Markov Assumption — trivial!

The same logic (and math) for finding T=2 applies here

Markov Chain Stationary Distribution

A probability vector π is called a **stationary distribution** for a Markov Chain if it satisfies the stationary equation: $\pi=\pi M$

$$
M = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix} \qquad \begin{aligned} \pi[W] &= .4\pi[W] + .1\pi[G] + .5\pi[C] \\ \pi[S] &= .6\pi[W] + .6\pi[G] + 0\pi[C] \\ \pi[E] &= 0\pi[W] + .3\pi[G] + .5\pi[C] \end{aligned}
$$

Markov Chain Stationary Distribution

Stationary distributions can be calculated using the system of equation (and that all probabilities sum to 1). **But not every Markov Chain has a steady state (and some have infinitely many)!**

Markov Chain Monte Carlo

There are ways to prove whether a Markov Chain has a stationary distribution, but several algorithms exist that approximate!

Gibbs Sampling:

Randomly assign values to a probability vector $\pi_{t=0} = (\theta_0, \theta_1, \ldots, \theta_{d-1}).$

Compute π_{i+1} for each $i, 0 \leq i < d$:

```
Update value \theta_i based on
(\theta_0, \ldots, \theta_{i-1})_{i+1}, (\theta_{i+1}, \ldots, \theta_{d-1})_t
```
Repeat for different ordering of *i*

Markov Chain Monte Carlo

A single step of a 3D Gibbs Sampling:

Given $\pi_t = (X_t, Y_t, Z_t)$

Compute π_{t+1} by updating each value one at a time:

$$
X_{t+1} = M[X, X]X_t + M[Y, X]Y_t + M[Z, X]^* Z_t
$$

\n
$$
Y_{t+1} = M[X, Y]X_{t+1} + M[Y, Y]Y_t + M[Z, Y]^* Z_t
$$

\n
$$
Z_{t+1} = M[X, Z]X_{t+1} + M[Y, Z]Y_{t+1} + M[Z, Z]^* Z_t
$$

\nNow have $\pi_{t+1} = (X_{t+1}, Y_{t+1}, Z_{t+1})$

In the real world, we often don't know the underlying markov chain!

Instead, we have observations that can be used to predict our current state.

Ex: Repeated coin flips but *sometimes* I cheat and use a fixed coin.

Unobserved States

Observed Emissions

$$
M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix} \quad E = \begin{pmatrix} .8 & .2 \\ .3 & .7 \\ .5 & .5 \end{pmatrix}
$$

Pr({O, I, O} | {C, R, S})?

 $Pr({ O, I, O}, { C, R, S} | P(T₀ = C) = 0.4)$?

$$
M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix} \quad E = \begin{pmatrix} .8 & .2 \\ .3 & .7 \\ .5 & .5 \end{pmatrix}
$$

Pr({O, I, O})?

 $M =$.5 .3 .2 .5 .4 .1 .2 .1 .7 $E =$.8 .2 .3 .7 .5 .5

If I go outside for three days, what was the most likely weather?

Viterbi Algorithm

We can brute force all possible combinations…

… or we can use the Markov Assumption with Dynamic Programming

$$
M = \begin{pmatrix} .6 & .4 \\ .4 & .6 \end{pmatrix} \qquad E = \begin{pmatrix} .8 & .2 \\ .5 & .5 \end{pmatrix}
$$

Example by Ben Langmead

Viterbi Algorithm

 $S_{k,i}$ = *greatest joint probability* of observing the length-*i* prefix of *e* and any sequence of states ending in state *k*

Viterbi Algorithm

$S[t + 1, L] =$

$S[t + 1, L] = max$ ${\cal S}[t, L] * M[L|L] * E[e_{t+1} | L]$
 ${\cal S}[t, F] * M[L|F] * E[e_{t+1} | L]$ $S[t, F] * M[L|F] * E[e_{t+1} | L]$

Viterbi Algorithm

$S[t + 1, F] =$

Assume we start with Fair/Loaded with equal probability

 $S[0, L] = 0.5 \cdot E(H | L)$ $S[0, F] = 0.5 \cdot E(H | F)$ $= 0.5 \cdot 0.8$ $= 0.5 \cdot 0.5$

 $S[1, L] =$

 $S[1, F] =$

Viterbi Algorithm **These get small very fast— use** *log*2 **scaling**

Traceback: Same as edit distance!

Start from largest value and remember 'where I came from'

Viterbi Algorithm These get small — now log_2 scaled

Traceback: Same as edit distance!

Start from largest value and remember 'where I came from'

Viterbi Algorithm

What is running time?