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Please fill out ICES Evaluations
Feedback is important for the development of the class

If not enough people fill it out, doesn’t actually get recorded



Learning Objectives

Define and determine stationary states

Introduce State Diagrams and Markov Chains

Introduce Hidden Markov Models 

Identify how Markov chains can be used to:

Estimate probabilities of sequences

Identify more probable labels

Predict future states



Modeling events with State Diagrams

Class is happening Class isn’t happening

A state diagram is a (usually weighted) directed graph where nodes are 
states and edges are transitions between them

These diagrams are very useful in modeling many real world scenarios!



Sequence Modeling in Biology

A C

TG



Market Trends in Economics

Bull

Bear

Stagnant



PageRank in Graphs
1

2

4

3

6 7

8

5

1: 4/13

2: 2/13

3: 2/13

4: 1/13

5: 1/13

6: 1/13

7: 1/13

8: 1/13

Equilibrium State



PageRank in Graphs
1

2

4

3

6 7

8

5

1: 4/13

2: 2/13

3: 2/13

4: 1/13

5: 1/13

6: 1/13

7: 1/13

8: 1/13

Equilibrium State



Markov Assumption

The probability of the next state depends only on our current state



Markov Chain
A finite Markov Chain has a set of states  and a finite matrix  S M

Clear Rain

Snow

.5
.3

.2
M =

.5 .3 .2

.5 .4 .1

.2 .1 .7

S = {Clear, Rain, Snow}



Markov Chain
Given a Markov Chain and an initial state, all subsequent states can be 
represented either as a series of random states or a transition probability. 

Clear Rain

Snow

M =
.5 .3 .2
.5 .4 .1
.2 .1 .7

ClearX0 =

ClearX1 =

SnowX2 =

SnowX3 =

SnowX4 =

RainX5 =



Markov Assumption

Probability of state  depends only on previous state xk xk−1

P(x) = P(xk, xk−1, . . . x1)

Ex: Let x = {C, R, C, R, R}

P(x) = P(xk |xk−1, . . . x1)P(xk−1, . . . x1)

P(x) = P(xk |xk−1, . . . x1)P(xk−1 |xk−2, . . . x1) . . . P(x2 |x1)P(x1)

P(x) ≈



Markov Assumption

Probability of state  depends only on previous state xk xk−1

P(x) = P(xk, xk−1, . . . x1)

Ex: Let x = {C, R, C, R, R}

P(x) = P(xk |xk−1, . . . x1)P(xk−1, . . . x1)

P(x) = P(xk |xk−1, . . . x1)P(xk−1 |xk−2, . . . x1) . . . P(x2 |x1)P(x1)

P(x) ≈ P(xk |xk−1)P(xk−1 |xk−2) . . . P(x2 |x1)P(x1)



Markov Chain
Given a Markov Chain and an initial state, all subsequent states can be 
represented either as a series of random states or a transition probability. 

Clear Rain

Snow

M =
.5 .3 .2
.5 .4 .1
.2 .1 .7

M0 = (.4 .3 .3)

M1 = (.41 .27 .32)

M2 = (.404 .263 .333)

M3 = (.401 .259 .340)



Markov Chain in Sequencing

A C

TG

Given a set of sequences, we can construct a model of transitions

P( A | A ) = 

P( C | A ) = # times AC occurs / # times AX occurs

P( G | A ) = # times AG occurs / # times AX occurs

P( T | A ) = # times AT occurs / # times AX occurs

P( A | C ) = # times CA occurs / # times CX occurs

(etc)

# times AA occurs / # times AX occurs

where X is any base

Example by Ben Langmead



Markov Chain in Sequencing

Given a set of sequences, we can construct a model of transitions

Example by Ben Langmead

>>> ins_conds, _ = markov_chain_from_dinucs(samp) 
>>> print(ins_conds) 
[[ 0.19152248,  0.27252589,  0.39998803,  0.1359636 ], 
 [ 0.18921984,  0.35832388,  0.25467081,  0.19778547], 
 [ 0.17322219,  0.33142737,  0.35571338,  0.13963706], 
 [ 0.09509721,  0.33836493,  0.37567927,  0.19085859]]

A 
C 
G 
T

P( T | G )xi

xi-1

A                                C                               G                              T



Markov Chain in Sequencing

Example by Ben Langmead

>>> ins_conds, _ = markov_chain_from_dinucs(samp) 
>>> print(ins_conds) 
[[ 0.19152248,  0.27252589,  0.39998803,  0.1359636 ], 
 [ 0.18921984,  0.35832388,  0.25467081,  0.19778547], 
 [ 0.17322219,  0.33142737,  0.35571338,  0.13963706], 
 [ 0.09509721,  0.33836493,  0.37567927,  0.19085859]]

A 
C 
G 
T

xi

xi-1

A                                C                               G                              T

x = GATC

P( x ) = P(C | T) P(T | A) P(A | G) P(G) = 0.33836493 * 
0.1359636  * 
0.17322219 * 
0.25

          = 0.001992

P( x ) = P( x4 | x3 ) P( x3 | x2 ) P( x2 | x1 ) P( x1 )
= 0.001992



Markov Chain in Sequencing

We can use this same approach to predict a label in our sequences as well

Example by Ben Langmead

CpG island: part of the genome where CG occurs particularly frequently



Markov Chain in Sequencing

Example by Ben Langmead

To predict a label of a sequencing region, make a Markov chain for both!

A C

TG

A C

TG

CpG Island ‘Default’



Markov Chain in Sequencing

Example by Ben Langmead

To predict a label of a sequencing region, make a Markov chain for both!

Use ratio:
P( x ) from CpG model

P( x ) from Default model

A C

TG

A C

TG

CpG Island ‘Default’



Markov Chain in Sequencing
To predict a label of a sequencing region, make a Markov chain for both!

S(x) = log
P( x ) inside CpG

P( x ) outside CpG

If inside more probable than outside, fraction is > 1, log ratio is > 0.  
Otherwise, fraction is ≤ 1 and log ratio is ≤ 0.

Take log, get a log ratio:

log P( x )    ≈    log [ P( xk | xk-1 ) P( xk-1 | xk-2 ) ... P( x2 | x1 ) P( x1 ) ]

=   log P( xk | xk-1 ) + log P( xk-1 | xk-2 ) + ...

=   ∑ log P( xi | xi-1 ) + log P( x1 )
i=2

k product becomes sum



Markov Chain in Sequencing
To predict a label of a sequencing region, make a Markov chain for both!

S(x) = log
P( x ) inside CpG

P( x ) outside CpG

If inside more probable than outside, fraction is > 1, log ratio is > 0.  
Otherwise, fraction is ≤ 1 and log ratio is ≤ 0.

Take log, get a log ratio:

log P( x )    ≈    log [ P( xk | xk-1 ) P( xk-1 | xk-2 ) ... P( x2 | x1 ) P( x1 ) ]

=   log P( xk | xk-1 ) + log P( xk-1 | xk-2 ) + ...

=   ∑ log P( xi | xi-1 ) + log P( x1 )
i=2

k product becomes sum



>>> cpg_conds, _ = markov_chain_from_dinucs(samp_cpg) 
>>> print(cpg_conds) 
[[ 0.19152248,  0.27252589,  0.39998803,  0.1359636 ], 
 [ 0.18921984,  0.35832388,  0.25467081,  0.19778547], 
 [ 0.17322219,  0.33142737,  0.35571338,  0.13963706], 
 [ 0.09509721,  0.33836493,  0.37567927,  0.19085859]] 
>>> default_conds, _ = markov_chain_from_dinucs(samp_def) 
>>> print(default_conds) 
[[ 0.33804066,  0.17971034,  0.23104207,  0.25120694], 
 [ 0.37777025,  0.25612117,  0.03987225,  0.32623633], 
 [ 0.30257815,  0.20326794,  0.24910719,  0.24504672], 
 [ 0.21790184,  0.20942905,  0.2642385 ,  0.3084306 ]] 
>>> print(np.log2(cpg_conds) - np.log2(def_conds)) 
[[-0.87536356,  0.59419041,  0.81181564, -0.85527103], 
 [-0.98532149,  0.49570561,  2.64256972, -0.7126391 ], 
 [-0.79486196,  0.68874785,  0.51821792, -0.79549511], 
 [-1.22085697,  0.73036913,  0.48119354, -0.69736839]]

CpG

Default

A 
C 
G 
T

A 
C 
G 
T

Log  ratio

A 
C 
G 
T

A                                C                               G                              T



Markov Chain in Sequencing

Example by Ben Langmead

x = GATC

P( x ) = P(C | T) P(T | A) P(A | G) P(G) =

          = 0.001992

P( x ) = P( x4 | x3 ) P( x3 | x2 ) P( x2 | x1 ) P( x1 )
=

>>> print(np.log2(cpg_conds) - np.log2(def_conds)) 
[[-0.87536356,  0.59419041,  0.81181564, -0.85527103], 
 [-0.98532149,  0.49570561,  2.64256972, -0.7126391 ], 
 [-0.79486196,  0.68874785,  0.51821792, -0.79549511], 
 [-1.22085697,  0.73036913,  0.48119354, -0.69736839]]

A 
C 
G 
T

xi

xi-1

A            C            G            T

 0.73036913 + 
-0.85527103 + 
-0.79486196

-0.919763



Markov Chain in Sequencing
Drew 1,000 100-mers from inside CpG islands and another 1,000 from 
outside, and calculated S(x) for all

Orange: default Blue: CpG

Frequency

S(x) score



M =
.4 .6 0
.1 .6 .3
.5 0 .5

Work Game

Clean

If I’m working at time 0, what is probability that I’m 
working at time ?t

Claim: Pr(Xt = v |X0 = u) = Mt[u, v]

Markov Chain Matrix

T=1: 

Base Case:



M =
.4 .6 0
.1 .6 .3
.5 0 .5

Work Game

Clean

If I’m working at time 0, what is probability that I’m 
working at time ?t

Claim: Pr(Xt = v |X0 = u) = Mt[u, v]

Markov Chain Matrix

T=2: 

Base Case:

M2 =
.22 .6 .18
.25 .42 .33
.45 0.3 .25



Markov Chain Matrix

M =
.4 .6 0
.1 .6 .3
.5 0 .5

Work Game

Clean

Claim: Pr(Xt = v |X0 = u) = Mt[u, v]
Induction:  
Assume . 

Show holds for 

Pr(Xt−1 = v |X0 = u) = Mt−1[u, v]
Pr(Xt = w |X0 = u) = Mt[u, w]

By Markov Assumption — trivial! 
The same logic (and math) for finding T=2 applies here



M =
.4 .6 0
.1 .6 .3
.5 0 .5

Work Game

Clean

What happens as ?t → ∞
Markov Chain Matrix

M3 =
.238 .492 .270
.307 .402 .291
.335 .450 .215

M10 =
.2940 .4413 .2648
.2942 .4411 .2648
.2942 .4413 .2648

M60 =
.2941 .4412 .2647
.2941 .4412 .2647
.2941 .4412 .2647



Markov Chain Stationary Distribution
A probability vector  is called a stationary distribution for a Markov 
Chain if it satisfies the stationary equation: 

π
π = πM

M =
.4 .6 0
.1 .6 .3
.5 0 .5

π[W ] = .4π[W ] + .1π[G] + .5π[C]

π[S] = .6π[W ] + .6π[G] + 0π[C]

π[E] = 0π[W ] + .3π[G] + .5π[C]



Markov Chain Stationary Distribution
Stationary distributions can be calculated using the system of equation 
(and that all probabilities sum to 1). But not every Markov Chain has a 
steady state (and some have infinitely many)!

On Off
1

1

1 2
.5 .5

3
1 1



Markov Chain Monte Carlo
There are ways to prove whether a Markov Chain has a stationary 
distribution, but several algorithms exist that approximate!

Gibbs Sampling:

Randomly assign values to a probability 
vector .πt=0 = (θ0, θ1, . . . , θd−1)

Compute  for each :πt+1 i, 0 ≤ i < d

Update value  based onθi
(θ0, . . . , θi−1)t+1, (θi+1, . . . , θd−1)t

Repeat for different ordering of i



Markov Chain Monte Carlo
A single step of a 3D Gibbs Sampling:

Given πt = (Xt, Yt, Zt)

Compute  by updating each value one at a time:πt+1

Xt+1 = M[X, X]Xt + M[Y, X]Yt + M[Z, X] * Zt

Yt+1 = M[X, Y ]Xt+1 + M[Y, Y ]Yt + M[Z, Y ] * Zt

Zt+1 = M[X, Z]Xt+1 + M[Y, Z]Yt+1 + M[Z, Z] * Zt

Now have πt+1 = (Xt+1, Yt+1, Zt+1)



Hidden Markov Models

In the real world, we often don’t know the underlying markov chain!

Instead, we have observations that can be used to predict our current state. 

Ex: Repeated coin flips but sometimes I cheat and use a fixed coin.

..
loaded

T H H T H



Hidden Markov Models

...

...

s1 s2 s3 s4 sn

e1 e2 e3 e4 en

Unobserved States

Observed Emissions



Hidden Markov Models

Outside Inside

M =
.5 .3 .2
.5 .4 .1
.2 .1 .7

E =
.8 .2
.3 .7
.5 .5

Pr( {O, I, O}, {C, R, S} | P(T0 = C) = 0.4)? 

Pr( {O, I, O} | {C, R, S})? 



Hidden Markov Models
M =

.5 .3 .2

.5 .4 .1

.2 .1 .7
E =

.8 .2

.3 .7

.5 .5

Pr( {O, I, O})? 

Outside Inside



Hidden Markov Models
M =

.5 .3 .2

.5 .4 .1

.2 .1 .7
E =

.8 .2

.3 .7

.5 .5

If I go outside for three days, what was the most likely weather?

Outside Inside



Viterbi Algorithm
We can brute force all possible combinations…

… or we can use the Markov Assumption with Dynamic Programming

M = (.6 .4
.4 .6) E = (.8 .2

.5 .5)

Example by Ben Langmead



Viterbi Algorithm

H H T T H T H H H H H

Loaded 

Fair

Emissions

HMM States

Sk, i  = greatest joint probability of observing the length-i prefix 
of e and any sequence of states ending in state k

max P(xF, HHTT)
x

max P(xL, HHTTHTHH)
x



Viterbi Algorithm

Loaded

Fair

xt xt+1

et+1

S[t, L]

S[t, F]

S[t + 1, L] =



Viterbi Algorithm

Loaded

Fair

xt xt+1

et+1

S[t, L]

S[t, F]

S[t + 1, L] = max{S[t, L] * M[L |L] * E[et+1 |L]
S[t, F] * M[L |F] * E[et+1 |L]



Viterbi Algorithm

Loaded

Fair

xt xt+1

et+1

S[t, L]

S[t, F]

S[t + 1, F] =



Assume we start with Fair/Loaded with equal probability

S[0, L] =  0.5 · E(H | L) S[0, F] =  0.5 · E(H | F)

SL, 0 =  0.5 · 0.8 SF, 0 =  0.5 · 0.5

Viterbi Algorithm

H H T T H T H H H H H

Loaded 

Fair

M = (.6 .4
.4 .6)

E = (.8 .2
.5 .5)



Viterbi Algorithm

0.4

0.25

H H T T H T H H H H H

Loaded 

Fair

M = (.6 .4
.4 .6)

S[1, L] =

E = (.8 .2
.5 .5)



Viterbi Algorithm

0.4 0.19

0.25

H H T T H T H H H H H

Loaded 

Fair

M = (.6 .4
.4 .6)

S[1, F] =

E = (.8 .2
.5 .5)



Viterbi Algorithm

0.4 0.19

0.25 0.08

H H T T H T H H H H H

Loaded 

Fair

M = (.6 .4
.4 .6)

E = (.8 .2
.5 .5)



Viterbi Algorithm

-1.32 -2.38 -5.44 -8.35 -8.08 -11.1 -11.6 -12.6 -13.7 -14.7 -15.8

-2 -3.64 -4.7 -6.4 -8.2 -9.9 -11.7 -13.4 -14.9 -16 -17

H H T T H T H H H H H

These get small very fast— use  scalinglog2

Traceback: Same as edit distance!

Start from largest value and remember ‘where I came from’



Viterbi Algorithm

-1.32 -2.38 -5.44 -8.35 -8.08 -11.1 -11.6 -12.6 -13.7 -14.7 -15.8

-2 -3.64 -4.7 -6.4 -8.2 -9.9 -11.7 -13.4 -14.9 -16 -17

H H T T H T H H H H H

These get small — now  scaledlog2

Traceback: Same as edit distance!

Start from largest value and remember ‘where I came from’



Viterbi Algorithm
E, Emissions 

S, States

What is running time?


