String Algorithms and Data Structures Markov Chains

CS 199-225 Brad Solomon December 2, 2024

Department of Computer Science

Please fill out ICES Evaluations

Feedback is important for the development of the class

If not enough people fill it out, doesn't actually get recorded

Learning Objectives

Introduce State Diagrams and Markov Chains

Identify how Markov chains can be used to:

Estimate probabilities of sequences

Identify more probable labels

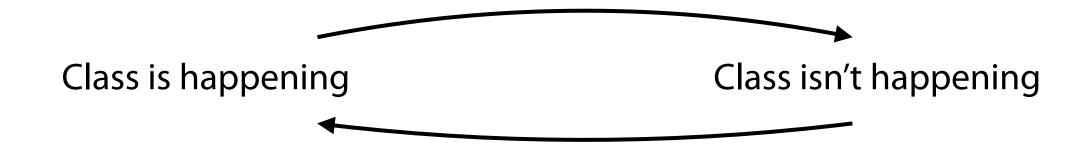
Predict future states

Define and determine stationary states

Introduce Hidden Markov Models

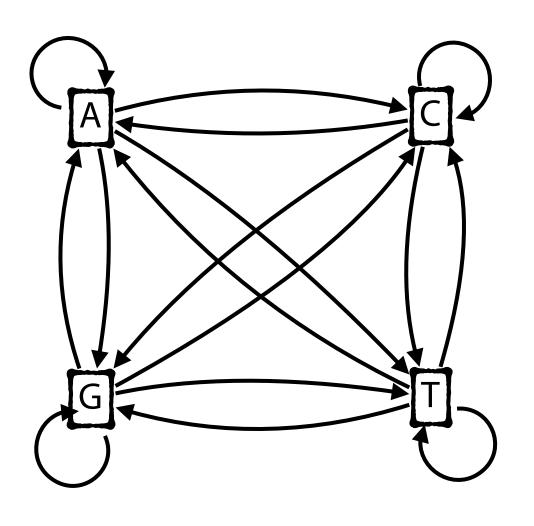
Modeling events with State Diagrams

A **state diagram** is a (usually weighted) directed graph where nodes are states and edges are transitions between them



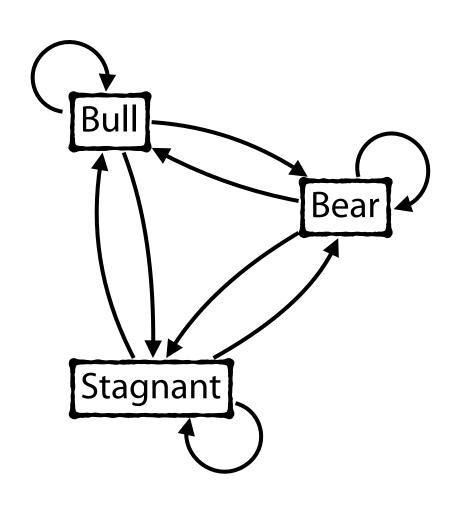
These diagrams are very useful in modeling many real world scenarios!

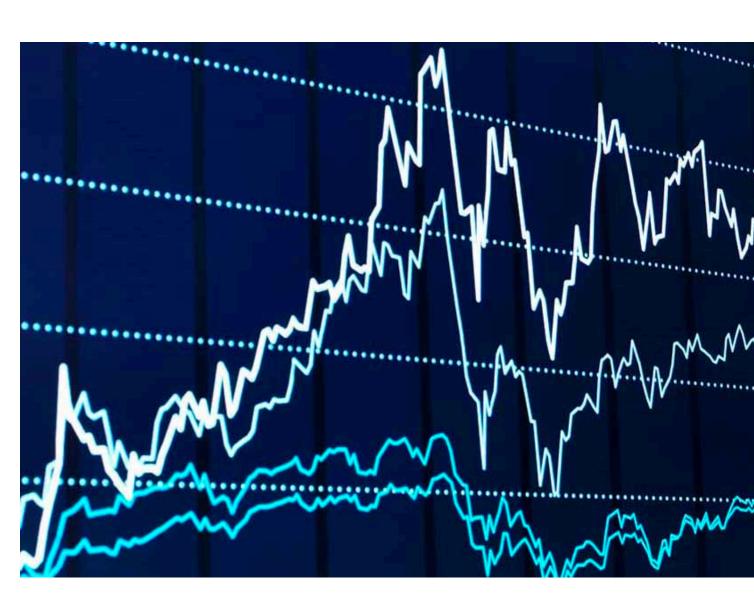
Sequence Modeling in Biology



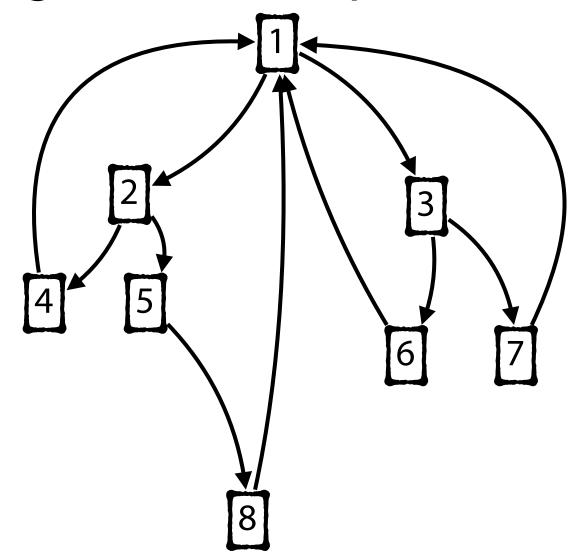
CATGACGTCGCGGACAACCCAGAATTGTCTTGAGCGATGGTAAGATCTAACCTCACTGC CTGGGGCTTTACTGATGTCATACCGTCTTGCACGGGGATAGAATGACGGTGCCCGTGTC ATTTTCTGAAAGTTACAGACTTCGATTAAAAAGATCGGACTGCGCGTGGGCCCGGAGAG TTTTTCGACGTGTCAAGGACTCAAGGGAATAGTTTGGCGGGAGCGTTACAGCTTCAATT CGATAAAATTCAACTACTGGTTTCGGCCTAATAGGTCACGTTTTATGTGAAATAGAGGG CCCTGGGTGTTCTATGATAAGTCCTGCTTTATAACACGGGGCGGTTAGGTTAAATGACT ATCCAAGCGCCCGCTAATTCTGTTCTGTTAATGTTCATACCAATACTCACATCACATTA AGCCCAGTCGCAAGGGTCTGCTGCTGTTGTCGACGCCTCATGTTACTCCTGGAATCTAC GGTTAAGGCGTGTGATCGACGATGCAGGTATACATCGGCTCGGACCTACAGTGGTCGAT TCGCGGTTCGGCGCGTAGTTGAGTGCGATAACCCAACCGGTGGCAAGTAGCAAGAAGAC AGACAACCTAACTAATAGTCTCTAACGGGGAATTACCTTTACCAGTCTCATGCCTCCAA CAATGATATCGCCCACAGAAAGTAGGGTCTCAGGTATCGCATACGCCGCGCCCGGGTCC GACAGTAGAGAGCTATTGTGTAATTCAGGCTCAGCATTCATCGACCTTTCCTGTTGTGA TCTCGTCCGTAACGATCTGGGGGGCAAAACCGAATATCCGTATTCTCGTCCTACGGGTC TGCGCGTGATCGTCAGTTAAGTTAAATTAATTCAGGCTACGGTAAACTTGTAGTGAGCT ACGGGTTCGCTACAGATGAACTGAATTTATACACGGACAACTCATCGCCCATTTGGGCG AAAGTGGCAGATTAGGAGTGCTTGATCAGGTTAGCAGGTGGACTGTATCCAACAGCGCA CCAAAGCGTTGTAGTGGTCTAAGCACCCCTGAACAGTGGCGCCCATCGTTAGCGTAGTA AGGTGCGACATGGGGCCAGTTAGCCTGCCCTATATCCCTTGCACACGTTCAATAAGAGG TTTTTAAATTAGGATGCCGACCCCATCATTGGTAACTGTATGTTCATAGATATTTCTTC AGCTGACACGCAAGGGTCAACAATAATTTCTACTATCACCCCGCTGAACGACTGTCTTT CTTAGATTCGCGTCCTAACGTAGTGAGGGCCGAGTCATATCATAGATCAGGCATGAGAA CACACGAGTTGTAAACAACTTGATTGCTATACTGTAGCTACCGCAAGGATCTCCTACAT ATCTGGATCCGAGTCAGAAATACGAGTTAATGCAAATTTACGTAGACCGGTGAAAACAC AGACCGTAGTCAGAAGTGTGGCGCGCTATTCGTACCGAACCGGTGGAGTATACAGAATT AGGAGCTCGGTCCCCAATGCACGCCAAAAAAGGAATAAAGTATTCAAACTGCGCATGGT CTATTATCCATCCGAACGTTGAACCTACTTCCTCGGCTTATGCTGTCCTCAACAGTATC ACTAAGTTATCCAGATCAAGGTTTGAACGGACTCGTATGACATGTGTGACTGAACCCGG CTGTTTCAAGGCCTCTGCTTTGGTATCACTCAATATATTCAGACCAGACAAGTGGCAAA CTAGGTATTCACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGGGGCAT AAAGACTACCCTATGGATTCCTTGGAGCGGGGACAATGCAGACCGGTTACGACACAATT GGTATTATTAGCAAGACAATAAAGGACATTGCACAGAGACTTATTAGAATTCAACAAAC GTGTTGGGTCGGCCAAGTCCCCGAAGCTCGCCCAAAAGATTCGCCATGGAACCGTCTGG

Market Trends in Economics





PageRank in Graphs



Equilibrium State

1:

2:

3:

4٠

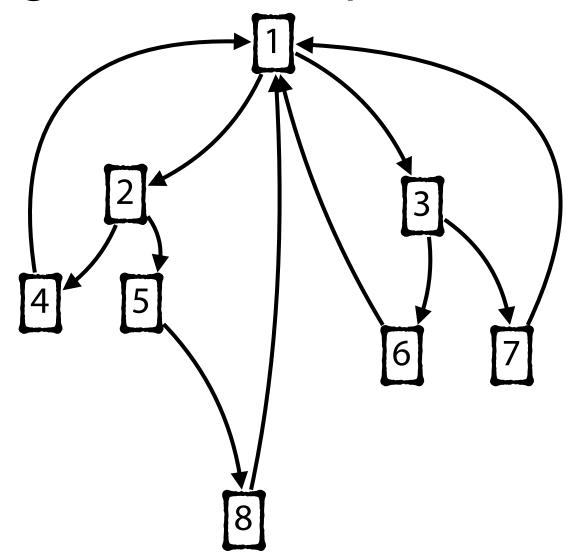
5:

6:

7:

8:

PageRank in Graphs



Equilibrium State

1:4/13

2: 2/13

3: 2/13

4: 1/13

5: 1/13

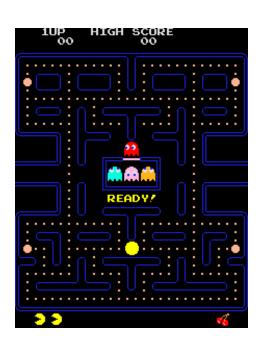
6: 1/13

7: 1/13

8: 1/13

Markov Assumption

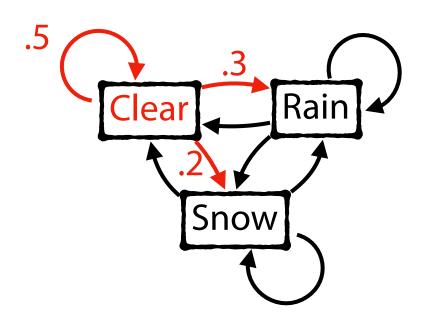
The probability of the next state depends only on our current state





Markov Chain

A finite Markov Chain has a set of states S and a finite matrix M

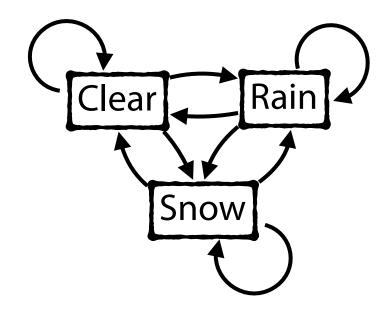


$$S = \{Clear, Rain, Snow\}$$

$$M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix}$$

Markov Chain

Given a Markov Chain and an initial state, all subsequent states can be represented either as a series of random states or a transition probability.



$$M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix}$$

$$X_0 = Clear$$

$$X_1 = Clear$$

$$X_2 = Snow$$

$$X_3 = Snow$$

$$X_4 = Snow$$

$$X_5 = Rain$$

Markov Assumption

Probability of state x_k depends only on previous state x_{k-1}

Ex: Let
$$x = \{C, R, C, R, R\}$$

$$P(x) = P(x_k, x_{k-1}, \dots x_1)$$

$$= P(x_k | x_{k-1}, \dots x_1) P(x_{k-1}, \dots x_1)$$

$$= P(x_k | x_{k-1}, \dots x_1) P(x_{k-1} | x_{k-2}, \dots x_1) \dots P(x_2 | x_1) P(x_1)$$

$$P(x) \approx$$

Markov Assumption

Probability of state x_k depends only on previous state x_{k-1}

Ex: Let
$$x = \{C, R, C, R, R\}$$

$$P(x) = P(x_k, x_{k-1}, \dots x_1)$$

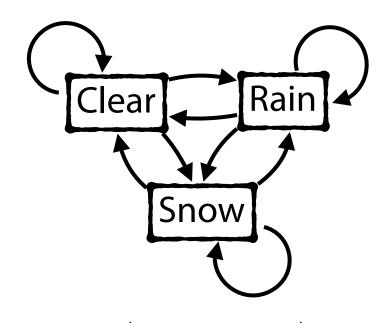
$$= P(x_k | x_{k-1}, \dots x_1) P(x_{k-1}, \dots x_1)$$

$$= P(x_k | x_{k-1}, \dots x_1) P(x_{k-1} | x_{k-2}, \dots x_1) \dots P(x_2 | x_1) P(x_1)$$

$$P(x) \approx P(x_k | x_{k-1}) P(x_{k-1} | x_{k-2}) \dots P(x_2 | x_1) P(x_1)$$

Markov Chain

Given a Markov Chain and an initial state, all subsequent states can be represented either as a series of random states or a **transition probability**.



$$M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix}$$

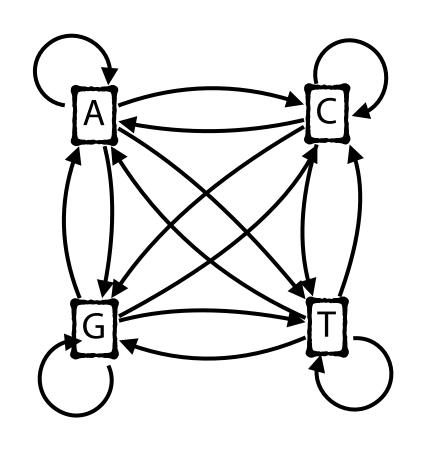
$$M_0 = (.4 .3 .3)$$

$$M_1 = (.41 .27 .32)$$

$$M_2 = (.404 \quad .263 \quad .333)$$

$$M_3 = (.401 \quad .259 \quad .340)$$

Given a set of sequences, we can construct a model of transitions

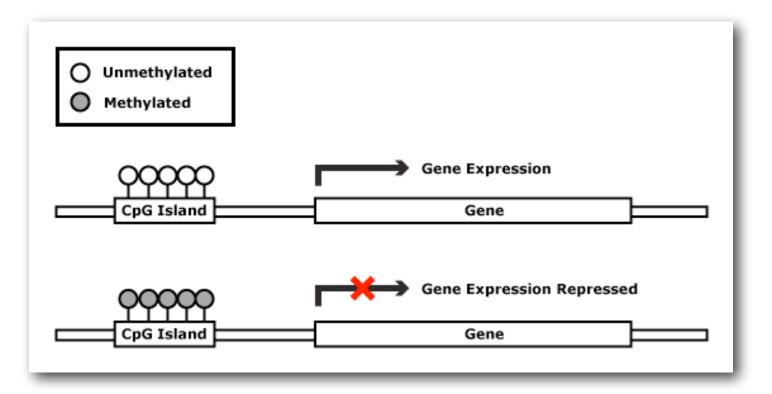


P(A|A) = # times AA occurs / # times AX occurs $P(C \mid A) = \# \text{ times AC occurs } / \# \text{ times AX occurs}$ $P(G \mid A) = \# \text{ times AG occurs } / \# \text{ times AX occurs}$ P(T|A) = # times AT occurs / # times AX occurs $P(A \mid C) = \# \text{ times CA occurs } / \# \text{ times CX occurs}$ where X is any base (etc)

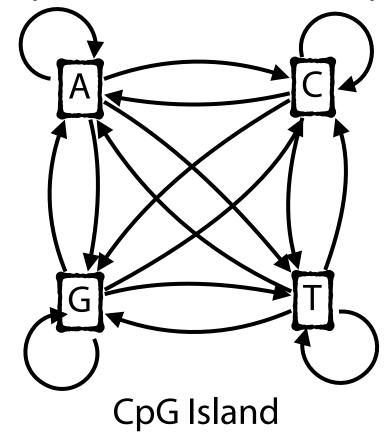
Given a set of sequences, we can construct a model of transitions

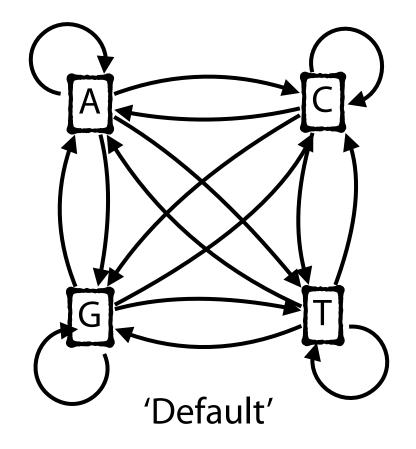
```
>>> ins_conds, _ = markov_chain_from_dinucs(samp)
        >>> print(ins conds)
      A [ 0.19152248, 0.27252589,
                                       0.39998803, [0.1359636],
                                                   0.19778547],
         [ 0.18921984, 0.35832388,
                                       0.25467081,
X<sub>i-1</sub>
         [ 0.17322219, 0.33142737,
                                      0.35571338, 0.13963706],
         [ 0.09509721, 0.33836493]
                                       0.37567927, 0.19085859]]
                Α
                                            G
                                   X_{i}
x = GATC
P(x) = P(x_4 | x_3) P(x_3 | x_2) P(x_2 | x_1) P(x_1)
P(x) = P(C \mid T) P(T \mid A) P(A \mid G) P(G) = 0.33836493 * = 0.001992
                                                        *
                                         0.1359636
                                         0.17322219
Example by Ben Langmead
                                         0.25
```

We can use this same approach to predict a *label* in our sequences as well *CpG island*: part of the genome where CG occurs particularly frequently

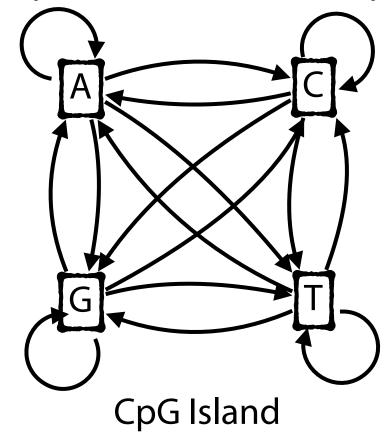


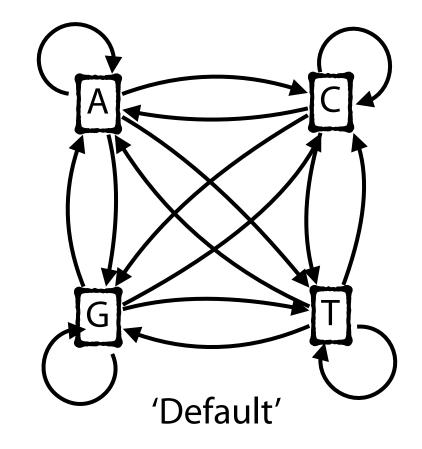
To predict a *label* of a sequencing region, make a Markov chain for both!





To predict a *label* of a sequencing region, make a Markov chain for both!





Use *ratio*:

P(x) from CpG model P(x) from Default model

To predict a *label* of a sequencing region, make a Markov chain for both!

Take log, get a *log ratio*:
$$S(x) = log \frac{P(x) inside CpG}{P(x) outside CpG}$$

$$\log P(x) \approx \log [P(x_{k} | x_{k-1}) P(x_{k-1} | x_{k-2}) ... P(x_{2} | x_{1}) P(x_{1})]$$

$$= \log P(x_{k} | x_{k-1}) + \log P(x_{k-1} | x_{k-2}) + ...$$

$$= \sum_{i=2}^{k} \log P(x_{i} | x_{i-1}) + \log P(x_{1})$$

If inside more probable than outside, fraction is > 1, log ratio is > 0. Otherwise, fraction is ≤ 1 and log ratio is ≤ 0 .

To predict a *label* of a sequencing region, make a Markov chain for both!

Take log, get a *log ratio*:
$$S(x) = log \frac{P(x) inside CpG}{P(x) outside CpG}$$

$$\log P(x) \approx \log [P(x_{k} | x_{k-1}) P(x_{k-1} | x_{k-2}) ... P(x_{2} | x_{1}) P(x_{1})]$$

$$= \log P(x_{k} | x_{k-1}) + \log P(x_{k-1} | x_{k-2}) + ...$$

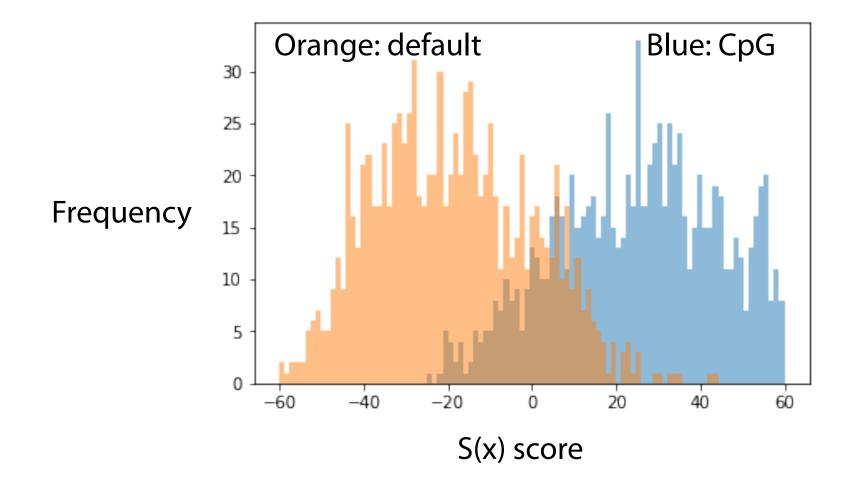
$$= \sum_{i=2}^{k} \log P(x_{i} | x_{i-1}) + \log P(x_{1})$$

If inside more probable than outside, fraction is > 1, log ratio is > 0. Otherwise, fraction is ≤ 1 and log ratio is ≤ 0 .

```
>>> cpg_conds, _ = markov_chain_from_dinucs(samp_cpg)
           >>> print(cpg conds)
       A [[ 0.19152248, 0.27252589, 0.39998803, 0.1359636 ],
   CpG G [ 0.18921984, 0.35832388, 0.25467081, 0.19778547], [ 0.17322219, 0.33142737, 0.35571338, 0.13963706],
           [ 0.09509721, 0.33836493, 0.37567927, 0.19085859]]
           >>> default_conds, _ = markov_chain_from_dinucs(samp_def)
Default C [[ 0.33804066, 0.17971034, 0.23104207, 0.25120694], [ 0.37777025, 0.25612117. 0.03097335
           [ 0.30257815, 0.20326794, 0.24910719, 0.24504672],
            [ 0.21790184, 0.20942905, 0.2642385, 0.3084306 ]]
           >>> print(np.log2(cpg_conds) - np.log2(def_conds))
          [[-0.87536356, 0.59419041, 0.81181564, -0.85527103],
        C [-0.98532149, 0.49570561, 2.64256972, -0.7126391],
           [-0.79486196, 0.68874785, 0.51821792, -0.79549511],
            [-1.22085697, 0.73036913, 0.48119354, -0.69736839]]
```

```
x = GATC
P(x) = P(x_4 | x_3) P(x_3 | x_2) P(x_2 | x_1) P(x_1)
P(x) = P(C | T) P(T | A) P(A | G) P(G) = 0.73036913 + = -0.919763
-0.85527103 + -0.79486196
```


Drew 1,000 100-mers from inside CpG islands and another 1,000 from outside, and calculated S(x) for all

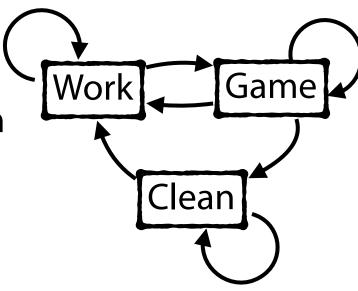


If I'm working at time 0, what is probability that I'm working at time *t*?

Claim:
$$Pr(X_t = v | X_0 = u) = M^t[u, v]$$

Base Case:

T=1:



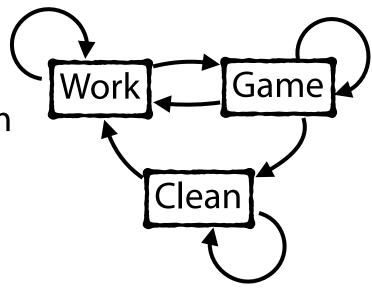
$$M = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix}$$

If I'm working at time 0, what is probability that I'm working at time *t*?

Claim:
$$Pr(X_t = v | X_0 = u) = M^t[u, v]$$

Base Case:

T=2:



$$M = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix}$$

$$M^2 = \begin{pmatrix} .22 & .6 & .18 \\ .25 & .42 & .33 \\ .45 & 0.3 & .25 \end{pmatrix}$$

Claim: $Pr(X_t = v | X_0 = u) = M^t[u, v]$

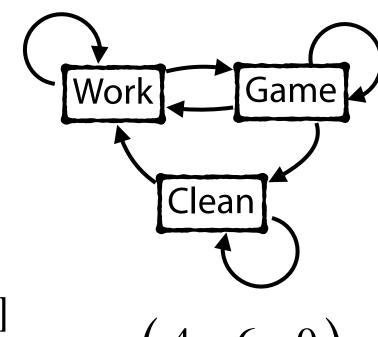
Induction:

Assume $Pr(X_{t-1} = v | X_0 = u) = M^{t-1}[u, v].$

Show holds for $Pr(X_t = w | X_0 = u) = M^t[u, w]$

By Markov Assumption — trivial!

The same logic (and math) for finding T=2 applies here



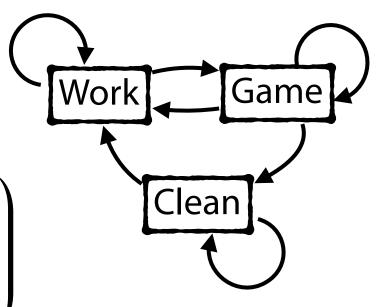
$$M = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix}$$

What happens as $t \to \infty$?

$$M = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix} \qquad M^3 = \begin{pmatrix} .238 & .492 & .270 \\ .307 & .402 & .291 \\ .335 & .450 & .215 \end{pmatrix}$$

$$M^{10} = \begin{pmatrix} .2940 & .4413 & .2648 \\ .2942 & .4411 & .2648 \\ .2942 & .4413 & .2648 \end{pmatrix}$$

$$M^{60} = \begin{pmatrix} .2941 & .4412 & .2647 \\ .2941 & .4412 & .2647 \\ .2941 & .4412 & .2647 \end{pmatrix}$$



Markov Chain Stationary Distribution

A probability vector π is called a **stationary distribution** for a Markov Chain if it satisfies the stationary equation: $\pi = \pi M$

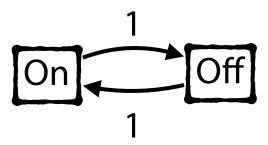
$$M = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix} \qquad \pi[W] = .4\pi[W] + .1\pi[G] + .5\pi[C]$$

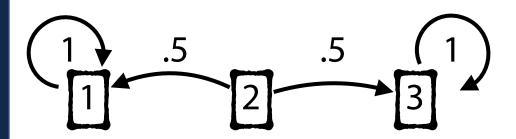
$$\pi[S] = .6\pi[W] + .6\pi[G] + 0\pi[C]$$

$$\pi[E] = 0\pi[W] + .3\pi[G] + .5\pi[C]$$

Markov Chain Stationary Distribution

Stationary distributions can be calculated using the system of equation (and that all probabilities sum to 1). **But not every Markov Chain has a steady state (and some have infinitely many)!**





Markov Chain Monte Carlo

There are ways to prove whether a Markov Chain has a stationary distribution, but several algorithms exist that approximate!

Gibbs Sampling:

Randomly assign values to a probability vector $\pi_{t=0} = (\theta_0, \, \theta_1, \, \dots, \, \theta_{d-1})$.

Compute π_{t+1} for each i, $0 \le i < d$:

Update value θ_i based on

$$(\theta_0, \ldots, \theta_{i-1})_{t+1}, (\theta_{i+1}, \ldots, \theta_{d-1})_t$$

Repeat for different ordering of i

Markov Chain Monte Carlo

A single step of a 3D Gibbs Sampling:

Given
$$\pi_t = (X_t, Y_t, Z_t)$$

Compute π_{t+1} by updating each value one at a time:

$$X_{t+1} = M[X, X]X_t + M[Y, X]Y_t + M[Z, X] * Z_t$$

$$Y_{t+1} = M[X, Y]X_{t+1} + M[Y, Y]Y_t + M[Z, Y] * Z_t$$

$$Z_{t+1} = M[X, Z]X_{t+1} + M[Y, Z]Y_{t+1} + M[Z, Z] * Z_t$$

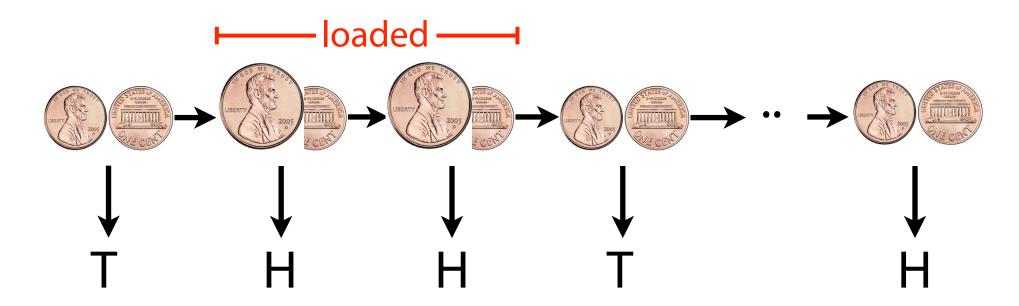
Now have
$$\pi_{t+1} = (X_{t+1}, Y_{t+1}, Z_{t+1})$$

Hidden Markov Models

In the real world, we often don't know the underlying markov chain!

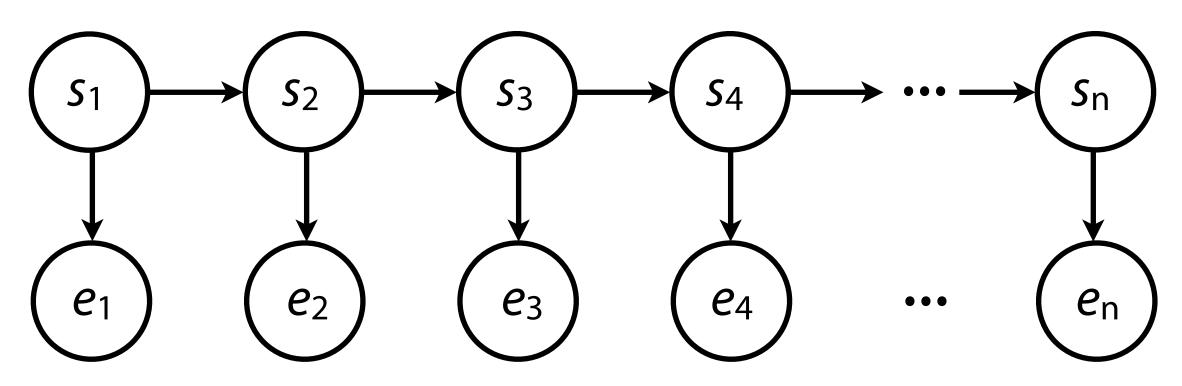
Instead, we have observations that can be used to predict our current state.

Ex: Repeated coin flips but sometimes I cheat and use a fixed coin.



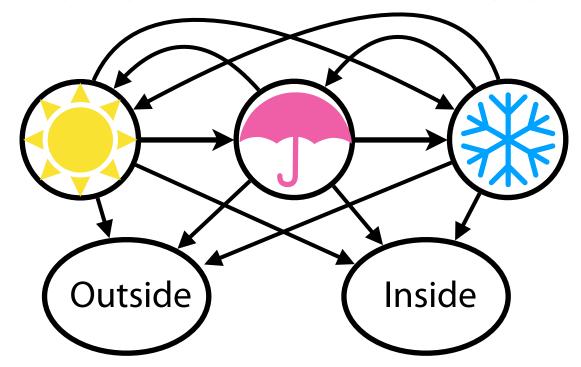
Hidden Markov Models

Unobserved States



Observed Emissions

Hidden Markov Models

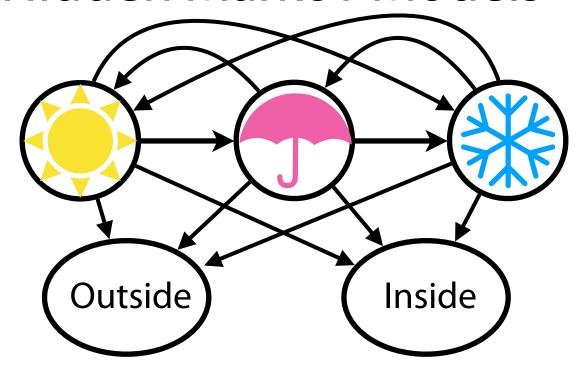


$$M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix} \quad E = \begin{pmatrix} .8 & .2 \\ .3 & .7 \\ .5 & .5 \end{pmatrix}$$

Pr({O, I, O} | {C, R, S})?

Pr($\{O, I, O\}, \{C, R, S\} \mid P(T_0 = C) = 0.4)$?

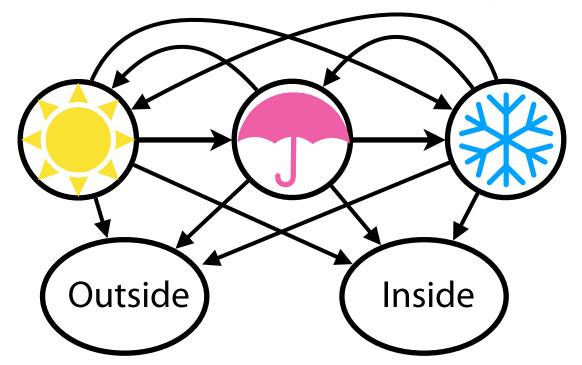
Hidden Markov Models



$$M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix} \quad E = \begin{pmatrix} .8 & .2 \\ .3 & .7 \\ .5 & .5 \end{pmatrix}$$

Pr({O, I, O})?

Hidden Markov Models



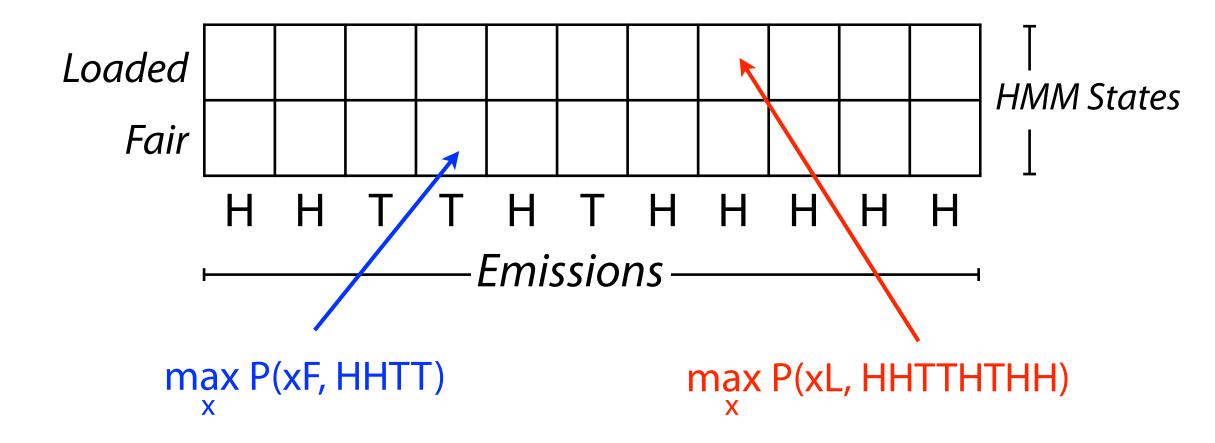
$$M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix} \quad E = \begin{pmatrix} .8 & .2 \\ .3 & .7 \\ .5 & .5 \end{pmatrix}$$

If I go outside for three days, what was the most likely weather?

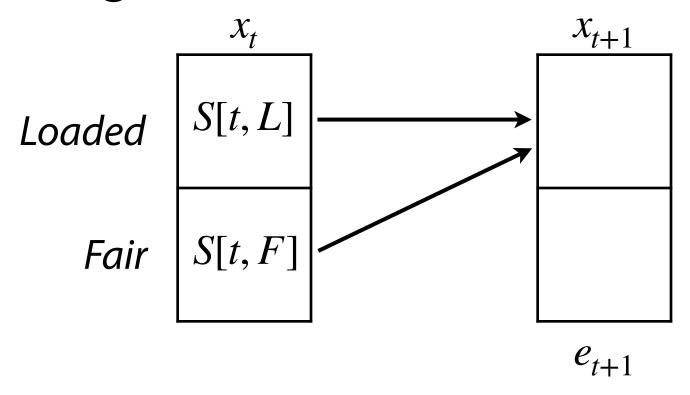
We can brute force all possible combinations...

... or we can use the Markov Assumption with Dynamic Programming

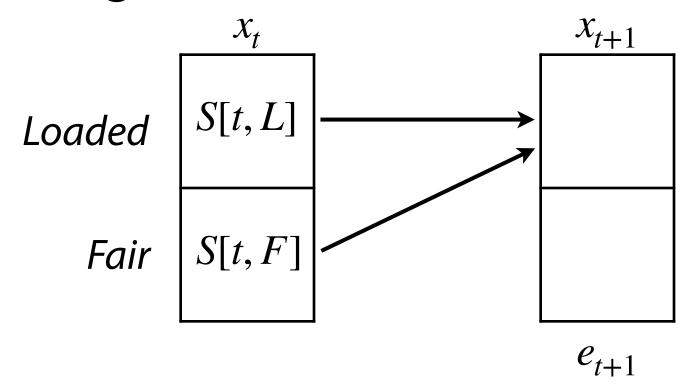
$$M = \begin{pmatrix} .6 & .4 \\ .4 & .6 \end{pmatrix} \qquad E = \begin{pmatrix} .8 & .2 \\ .5 & .5 \end{pmatrix}$$



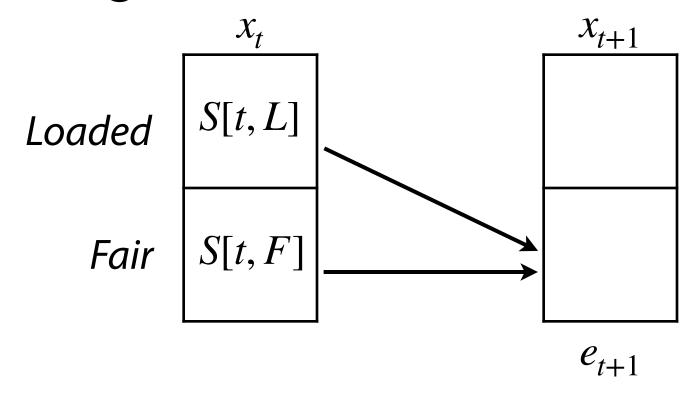
 $S_{k,i} = greatest\ joint\ probability\ of\ observing\ the\ length-i\ prefix$ of e and any sequence of states ending in state k



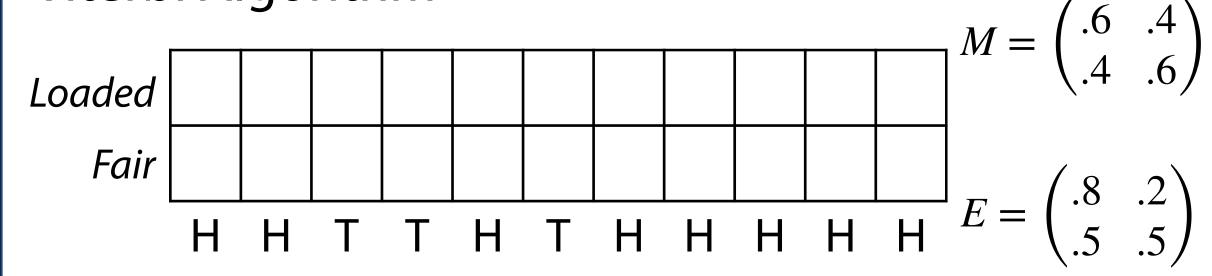
$$S[t + 1, L] =$$



$$S[t+1, L] = \max \begin{cases} S[t, L] * M[L|L] * E[e_{t+1}|L] \\ S[t, F] * M[L|F] * E[e_{t+1}|L] \end{cases}$$

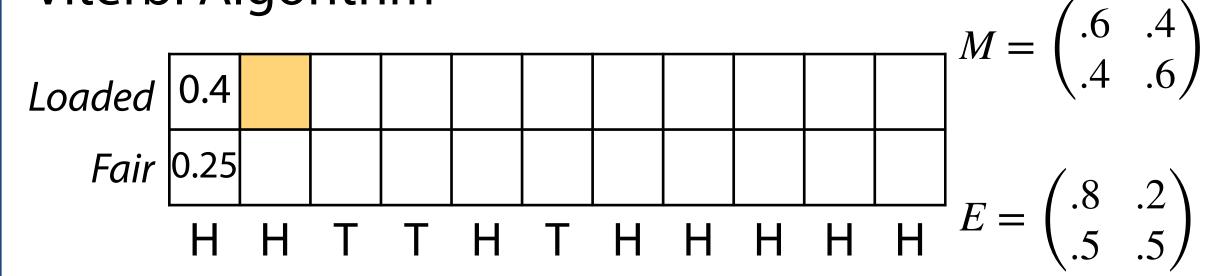


$$S[t + 1, F] =$$

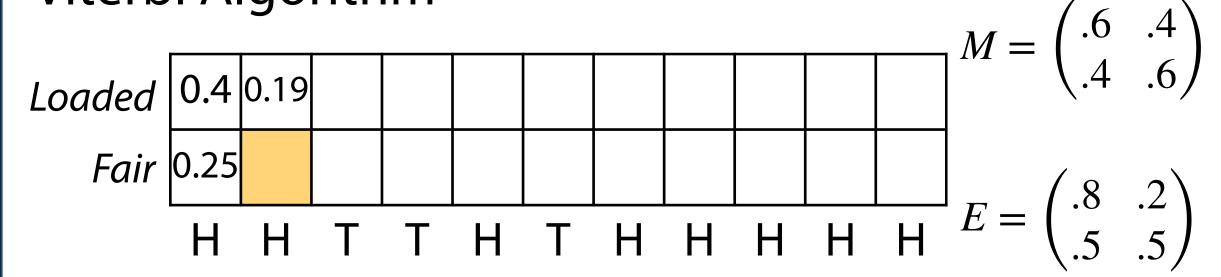


Assume we start with Fair/Loaded with equal probability

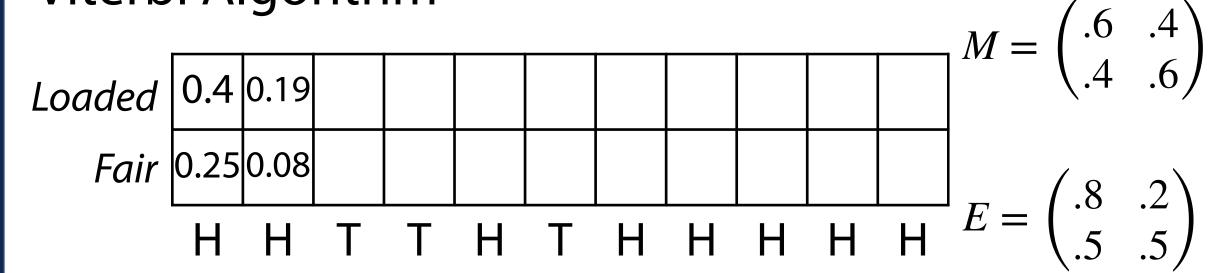
$$S[0, L] = 0.5 \cdot E(H \mid L)$$
 $S[0, F] = 0.5 \cdot E(H \mid F)$
= $0.5 \cdot 0.8$ = $0.5 \cdot 0.5$



$$S[1, L] =$$



$$S[1, F] =$$



Viterbi Algorithm These get small very fast— use log_2 scaling

-1.32	-2.38	-5.44	-8.35	-8.08	-11.1	-11.6	-12.6	-13.7	-14.7	-15.8
-2	-3.64	-4.7	-6.4	-8.2	-9.9	-11.7	-13.4	-14.9	-16	-17
Н	Н	Т	Т	Н	Т	Н	Н	Н	Н	Н

Traceback: Same as edit distance!

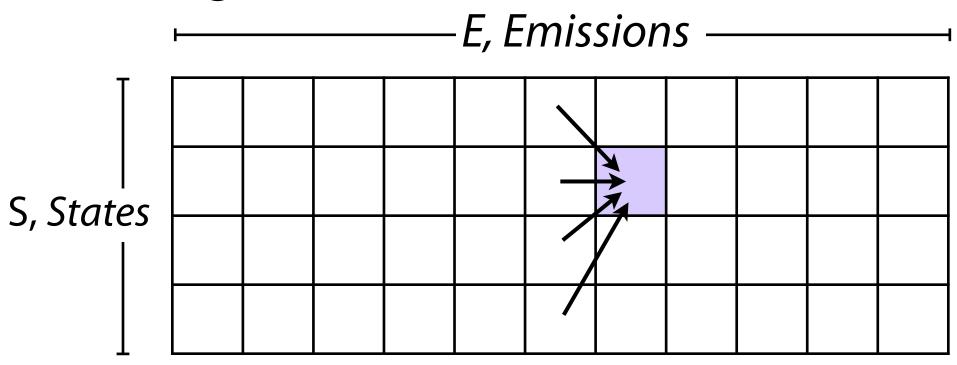
Start from largest value and remember 'where I came from'

These get small — now log_2 scaled

-1.32										
-2	-3.64	-4.7	6.1	8.2	9.9	-11.7	-13.4	-14.9	-16	-17
Н	Н	Т	Т	Н	Т	Н	Н	Н	Н	Н

Traceback: Same as edit distance!

Start from largest value and remember 'where I came from'



What is running time?