String Algorithms and Data Structures Markov Chains \mathcal{L} HMMS

CS 199-225 Brad Solomon December 2, 2024

Department of Computer Science

Please fill out ICES Evaluations

Feedback is important for the development of the class

If not enough people fill it out, doesn't actually get recorded

Introduce Hidden Markov Models

Modeling events with State Diagrams

A **state diagram** is a (usually weighted) directed graph where nodes are states and edges are transitions between them

These diagrams are very useful in modeling many real world scenarios!

Sequence Modeling in Biology

CATGACGTCGCGGACAACCCAGAATTGTCTTGAGCGATGGTAAGATCTAACCTCACTGC CTGGGGCTTTACTGATGTCATACCGTCTTGCACGGGGATAGAATGACGGTGCCCGTGTC ATTTTCTGAAAGTTACAGACTTCGATTAAAAAGATCGGACTGCGCGTGGGCCCGGAGAG TTTTTCGACGTGTCAAGGACTCAAGGGAATAGTTTGGCGGGAGCGTTACAGCTTCAATT CGATAAAATTCAACTACTGGTTTCGGCCTAATAGGTCACGTTTTATGTGAAATAGAGGG CCCTGGGTGTTCTATGATAAGTCCTGCTTTATAACACGGGGCGGTTAGGTTAAATGACT ATCCAAGCGCCCGCTAATTCTGTTCTGTTAATGTTCATACCAATACTCACATCACATTA AGCCCAGTCGCAAGGGTCTGCTGCTGTTGTCGACGCCTCATGTTACTCCTGGAATCTAC GGTTAAGGCGTGTGATCGACGATGCAGGTATACATCGGCTCGGACCTACAGTGGTCGAT TCGCGGTTCGGCGCGTAGTTGAGTGCGATAACCCAACCGGTGGCAAGTAGCAAGAAGAC AGACAACCTAACTAATAGTCTCTAACGGGGAATTACCTTTACCAGTCTCATGCCTCCAA CAATGATATCGCCCACAGAAAGTAGGGTCTCAGGTATCGCATACGCCGCGCCCGGGTCC GACAGTAGAGAGCTATTGTGTAATTCAGGCTCAGCATTCATCGACCTTTCCTGTTGTGA TCTCGTCCGTAACGATCTGGGGGGGCAAAACCGAATATCCGTATTCTCGTCCTACGGGTC TGCGCGTGATCGTCAGTTAAGTTAAATTAATTCAGGCTACGGTAAACTTGTAGTGAGCT ACGGGTTCGCTACAGATGAACTGAATTTATACACGGACAACTCATCGCCCATTTGGGCG AAAGTGGCAGATTAGGAGTGCTTGATCAGGTTAGCAGGTGGACTGTATCCAACAGCGCA CCAAAGCGTTGTAGTGGTCTAAGCACCCCTGAACAGTGGCGCCCATCGTTAGCGTAGTA AGGTGCGACATGGGGCCAGTTAGCCTGCCCTATATCCCTTGCACACGTTCAATAAGAGG TTTTTAAATTAGGATGCCGACCCCATCATTGGTAACTGTATGTTCATAGATATTTCTTC AGCTGACACGCAAGGGTCAACAATAATTTCTACTATCACCCCCGCTGAACGACTGTCTTT CTTAGATTCGCGTCCTAACGTAGTGAGGGCCGAGTCATATCATAGATCAGGCATGAGAA CACACGAGTTGTAAACAACTTGATTGCTATACTGTAGCTACCGCAAGGATCTCCTACAT ATCTGGATCCGAGTCAGAAATACGAGTTAATGCAAATTTACGTAGACCGGTGAAAACAC AGACCGTAGTCAGAAGTGTGGCGCGCCTATTCGTACCGAACCGGTGGAGTATACAGAATT AGGAGCTCGGTCCCCAATGCACGCCAAAAAAGGAATAAAGTATTCAAACTGCGCATGGT CTATTATCCATCCGAACGTTGAACCTACTTCCTCGGCTTATGCTGTCCTCAACAGTATC ACTAAGTTATCCAGATCAAGGTTTGAACGGACTCGTATGACATGTGTGACTGAACCCGG CTGTTTCAAGGCCTCTGCTTTGGTATCACTCAATATATTCAGACCAGACAAGTGGCAAA CTAGGTATTCACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGGGGGCAT AAAGACTACCCTATGGATTCCTTGGAGCGGGGACAATGCAGACCGGTTACGACACAATT GGTATTATTAGCAAGACAATAAAGGACATTGCACAGAGACTTATTAGAATTCAACAAAC GTGTTGGGTCGGGCAAGTCCCCGAAGCTCGGCCAAAAGATTCGCCATGGAACCGTCTGG

Market Trends in Economics

Total weight 1

Equilibrium State 1: 1/13 2: 2/13 3: 2/ 13 4: 1/13 5: 1/13 6: 11 13 7: 1/3 8: 1/13

Equilibrium State 1:4/13 2:2/13 3: 2/13 4: 1/13 5:1/13 6: 1/13 7:1/13 8:1/13

Markov Assumption

The probability of the next state depends only on our current state

Markov Chain

A finite Markov Chain has a set of states S and a finite matrix M

$$S = \{ Clear, Rain, Snow \}$$
$$M = \begin{pmatrix} 5 & 5 \\ .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix} \leq T$$

Markov Chain

Given a Markov Chain and an initial state, all subsequent states can be represented either as **a series of random states** or a transition probability.

Markov Chain

Ċ

Given a Markov Chain and an initial state, all subsequent states can be represented either as a series of random states or a **transition probability.**

$$M_0 = (.4 \ .3 \ .3)$$

 $M_1 = (.41 \ .27 \ .32)$
 $M_2 = (.404 \ .263 \ .333)$
 $M_3 = (.401 \ .259 \ .340)$

Markov Assumption

Probability of state x_k depends only on previous state x_{k-1}

Ex: Let $x = \{C, R, C, R, R\}$ Thu Wed Fri Sat **-** \rightarrow $P(x) = P(x_k, x_{k-1}, \dots, x_1)$ $= P(x_k | x_{k-1}, \dots, x_1) P(x_{k-1}, \dots, x_1)$ = $P(x_k | x_{k-1}, \dots, x_1) P(x_{k-1} | x_{k-2}, \dots, x_1) \dots P(x_2 | x_1) P(x_1)$ 53° 29° 60° 36° 53° 37° **47°** 28°

Sun

 $P(x) \approx$

Markov Assumption

Probability of state x_k depends only on previous state x_{k-1}

Ex: Let $x = \{C, R, C, R, R\}$ Wed Thu Fri Sat Sun \rightarrow $P(x) = P(x_k, x_{k-1}, \dots, x_1)$ 53° 29° 60° 36° 53° 37° 54° 37° 47° 28° \bigvee 7 $= P(x_k | x_{k-1}, \dots, x_1) P(x_{k-1}, \dots, x_1)$ $= P(x_k | x_{k-1}, \dots, x_1) P(x_{k-1} | x_{k-2}, \dots, x_1) \dots P(x_2 | x_1) P(x_1)$ $P(x) \approx P(x_k | x_{k-1}) P(x_{k-1} | x_{k-2}) \dots P(x_2 | x_1) P(x_1)$

Given a set of sequences, we can construct a model of transitions

P(A|A) = # times AA occurs / # times AX occurs P(C|A) = # times AC occurs / # times AX occurs P(G | A) = # times AG occurs / # times AX occurs $P(T | A) = \# \text{ times } A^{T} \text{ occurs } / \# \text{ times } AX \text{ occurs}$ P(A | C) = # times CA occurs / # times CX occurs (etc) where X is any base

Example by Ben Langmead

Given a set of sequences, we can construct a model of transitions

Example by Ben Langmead

>>> ins_conds, _ = markov_chain_from_dinucs(samp) >>> print(ins conds) A [[0.19152248, 0.27252589, 0.39998803, 0.1359636], 0.19778547], [0.18921984, 0.35832388, 0.25467081, **X**i-1 [0.17322219, 0.33142737, 0.35571338, 0.13963706], G [0.09509721, 0.33836493] 0.37567927, 0.19085859]] С G Α LV Xi x = GATC $P(x) = P(x_4 | x_3) P(x_3 | x_2) P(x_2 | x_1) P(x_1)$ P(x) = P(C|T) P(T|A) P(A|G) P(G) = 0.33836493 * = 0.001992* 0.1359636 0.17322219 * Example by Ben Langmead 0.25

We can use this same approach to predict a *label* in our sequences as well

CpG island: part of the genome where CG occurs particularly frequently

Example by Ben Langmead

To predict a *label* of a sequencing region, make a Markov chain for both!

Example by Ben Langmead

To predict a *label* of a sequencing region, make a Markov chain for both!

Use *ratio*:

Example by Ben Langmead

P(x) from Default model

To predict a *label* of a sequencing region, make a Markov chain for both!

Take log, get a *log ratio*: $S(x) = \log \frac{P(x) \text{ inside CpG}}{P(x) \text{ outside CpG}}$

 $log P(x) \approx log [P(x_{k} | x_{k-1}) P(x_{k-1} | x_{k-2}) ... P(x_{2} | x_{1}) P(x_{1})]$ $= log P(x_{k} | x_{k-1}) + log P(x_{k-1} | x_{k-2}) + ...$ product becomes sum $= \sum_{i=2}^{k} log P(x_{i} | x_{i-1}) + log P(x_{1})$

If inside more probable than outside, fraction is > 1, log ratio is > 0. Otherwise, fraction is \leq 1 and log ratio is \leq 0.

To predict a *label* of a sequencing region, make a Markov chain for both!

Take log, get a *log ratio*: $S(x) = \log \frac{P(x) \text{ inside CpG}}{P(x) \text{ outside CpG}}$

 $log P(x) \approx log [P(x_{k} | x_{k-1}) P(x_{k-1} | x_{k-2}) ... P(x_{2} | x_{1}) P(x_{1})]$ $= log P(x_{k} | x_{k-1}) + log P(x_{k-1} | x_{k-2}) + ...$ product becomes sum $= \sum_{i=2}^{k} log P(x_{i} | x_{i-1}) + log P(x_{1})$

If inside more probable than outside, fraction is > 1, log ratio is > 0. Otherwise, fraction is \leq 1 and log ratio is \leq 0.

	<pre>>>> cpg_conds, _ = markov_chain_from_dinucs(samp_cpg)</pre>									
	<pre>>>> print(cpg_conds)</pre>									
ТА	[[0.19152248, 0.27252589, 0.39998803, 0.1359636],									
	[0.18921984, 0.35832388, 0.25467081, 0.19778547],									
$c \rho \mathbf{G}$ G	[0.17322219, 0.33142737, 0.35571338, 0.13963706],									
т	[0.09509721, 0.33836493, 0.37567927, 0.19085859]]									
_	<pre>>>> default_conds, _ = markov_chain_from_dinucs(samp_def)</pre>									
ТА	<pre>>>> print(default_conds)</pre>									
	[[0.33804066, 0.17971034, 0.23104207, 0.25120694],									
G	[0.37777025, 0.25612117, 0.03987225, 0.32623633],									
⊥т	[0.30257815, 0.20326794, 0.24910719, 0.24504672],									
	[0.21790184, 0.20942905, 0.2642385 , 0.3084306]]									
	<pre>>>> print(np.log2(cpg_conds) - np.log2(def_conds))</pre>									
ТА	[[-0.87536356, 0.59419041, 0.81181564, -0.85527103],									
	[-0.98532149, 0.49570561, 2.64256972, -0.7126391],									
\mathbf{G}	[-0.79486196, 0.68874785, 0.51821792, -0.79549511],									
⊥т	[-1.22085697, 0.73036913, 0.48119354, -0.69736839]]									

С

A

Т

G

Example by Ben Langmead

Drew 1,000 100-mers from inside CpG islands and another 1,000 from outside, and calculated S(x) for all

Markov Chain Matrix

If I'm working at time 0, what is probability that I'm working at time *t*?

Claim:
$$Pr(X_t = v | X_0 = u) = M^t[u, v]$$

Base Case:

Game

Clean

Work

Markov Chain Matrix

Claim:
$$Pr(X_t = v | X_0 = u) = M^t[u, v]$$

Induction:

Assume $Pr(X_{t-1} = v | X_0 = u) = M^{t-1}[u, v].$ Show holds for $Pr(X_t = w | X_0 = u) = M^t[u, w]$

By Markov Assumption — trivial!

The same logic (and math) for finding T=2 applies here

Markov Chain Matrix What happens as $t \to \infty$? $M = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix} \qquad M^3 = \begin{pmatrix} .238 & .492 & .270 \\ .307 & .402 & .291 \\ .335 & .450 & .215 \end{pmatrix}$ $M^{10} = \begin{pmatrix} .2940 & .4413 & .2648 \\ .2942 & .4411 & .2648 \\ .2942 & .4413 & .2648 \end{pmatrix}$ $M^{60} = \begin{pmatrix} .2941 & .4412 & .2647 \\ .2941 & .4412 & .2647 \\ .2941 & .4412 & .2647 \end{pmatrix}$

Markov Chain Stationary Distribution

A probability vector π is called a **stationary distribution** for a Markov Chain if it satisfies the stationary equation: $\pi = \pi M$

$$\pi[W] = .4\pi[W] + .1\pi[G] + .5\pi[C]$$

$$\pi[W] = .4\pi[W] + .1\pi[G] + .5\pi[C]$$

$$\pi[S] = .6\pi[W] + .6\pi[G] + 0\pi[C]$$

$$\pi[S] = 0\pi[W] + .3\pi[G] + .5\pi[C]$$

$$\pi[S] = 0\pi[W] + .3\pi[G] + .5\pi[C]$$

$$\Psi = \frac{10}{54}$$

$$\varphi = .96 + .56$$

$$\Psi = \frac{10}{54}$$

$$\varphi = \frac{15}{54}$$

$$\varphi = .6W$$

$$\varphi = .46W$$

$$\varphi = .6W$$

$$\varphi = .6W$$

$$\varphi = .96 + .56$$

Markov Chain Stationary Distribution

0.4

Stationary distributions can be calculated using the system of equation (and that all probabilities sum to 1). **But not every Markov Chain has a** steady state (and some have infinitely many)!

If ON/OFF = 0.5

.5 (1) ~ # dr steady states

Markov Chain Monte Carlo

There are ways to prove whether a Markov Chain has a stationary distribution, but several algorithms exist that approximate!

Gibbs Sampling:

Randomly assign values to a probability vector $\pi_{t=0} = (\theta_0, \theta_1, \dots, \theta_{d-1})$. Compute π_{t+1} for each $i, 0 \le i < d$:

> Update value θ_i based on $(\theta_0, \ldots, \theta_{i-1})_{t+1}, (\theta_{i+1}, \ldots, \theta_{d-1})_t$

Repeat for different ordering of *i*

Markov Chain Monte Carlo

A single step of a 3D Gibbs Sampling:

Given $\pi_t = (X_t, Y_t, Z_t)$

Compute π_{t+1} by updating each value one at a time: $X_{t+1} = M[X, X]X_{t} + M[Y, X]Y_{t} + M[Z, X] * Z_{t}$ $Y_{t+1} = M[X, Y]X_{t+1} + M[Y, Y]Y_{t} + M[Z, Y] * Z_{t}$ $Z_{t+1} = M[X, Z]X_{t+1} + M[Y, Z]Y_{t+1} + M[Z, Z] * Z_{t}$ Now have $\pi_{t+1} = (X_{t+1}, Y_{t+1}, Z_{t+1})$

In the real world, we often don't know the underlying markov chain!

Instead, we have observations that can be used to predict our current state.

Ex: Repeated coin flips but *sometimes* I cheat and use a fixed coin.

(oin heads / tails

$$M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix} \quad E = \begin{pmatrix} .8 & .2 \\ .3 & .7 \\ .5 & .5 \end{pmatrix}$$

Pr({O, I, O} | {C, R, S})?

Pr({O, I, O}, {C, R, S} | $P(T_0 = C) = 0.4$)?

$$M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix} \quad E = \begin{pmatrix} .8 & .2 \\ .3 & .7 \\ .5 & .5 \end{pmatrix}$$

Pr({O, I, O})?

If I go outside for three days, what was the most likely weather?

$$\begin{array}{c|c} c_{\text{sact}} & 0, 0, 0 | ((() \\ c_{\text{sact}} & 0, 0, 0 | (() \\ c_{\text{sact}} & 0, 0, 0 | (() \\ c_{\text{sact}} & 0 \\ c_{\text{sact}} & c_{\text{sact}} & c_{\text{sact}} \\ c_{\text{sact}} \\ c_{\text{sact}} & c_{\text{sact}} \\ c_{\text{sact}} \\ c_{\text{sact}} & c_{\text{sact}} \\ c_{\text{sact}} & c_{\text{sact}} \\ c_{\text{sact}} \\ c_{\text{sact}} & c_{\text{sact}} \\ c_{\text{sact}} & c_{\text{sact}} \\ c_{\text{sact}} & c_{\text{sact}} \\ c_{\text{sact}} & c_{\text{sact}} \\ c_{\text{sact}} \\ c_{\text{sact}} & c_{\text{sact}} \\ c_{\text{sact}} \\ c_{\text{sact}} & c_{\text{sact}} \\ c_{\text{sact}}$$

Viterbi Algorithm

We can brute force all possible combinations...

... or we can use the Markov Assumption with Dynamic Programming

519/15 $M = \begin{pmatrix} .6 & .4 \\ .4 & .6 \end{pmatrix} \qquad E = \begin{pmatrix} .8 & .2 \\ .5 & .5 \end{pmatrix}$

Example by Ben Langmead

Viterbi Algorithm

 $S_{k,i} = greatest joint probability of observing the length-$ *i*prefix of*e*and any sequence of states ending in state*k*

Viterbi Algorithm

Viterbi Algorithm

5

Viterbi Algorithm

S[t + 1, F] =

Assume we start with Fair/Loaded with equal probability

 $S[0, L] = 0.5 \cdot E(H \mid L) \qquad S[0, F] = 0.5 \cdot E(H \mid F)$ $= 0.5 \cdot 0.8 \qquad = 0.5 \cdot 0.5$

Viterbi Algorithm

Viterbi Algorithm These get small very fast— use log_2 scaling

-1.32	-2.38	-5.44	-8.35	-8.08	-11.1	-11.6	-12.6	-13.7	-14.7	-15.8
-2	-3.64	-4.7	-6.4	-8.2	-9.9	-11.7	-13.4	-14.9	-16	-17
Н	Н	Т	Т	Н	T	Н	Н	Н	Н	H

Traceback: Same as edit distance!

Start from largest value and remember 'where I came from'

Viterbi Algorithm These get small — now log_2 scaled

Traceback: Same as edit distance!

Start from largest value and remember 'where I came from'

