
Department of Computer Science

String Algorithms and Data Structures

CS 199-225
Brad Solomon

November 11, 2024

Approximate Pattern Matching

Learning Objectives

Formally define a mismatch vs an edit

Discuss strategies for efficient approximate pattern matching…

… With mismatches

… With edits

Review exact pattern matching and introduce approximate matching

Suffix-Based Index Review

Suffix tree Suffix array FM Index

Time: Does P occur?

Time: Count k
occurrences of P

Time: Report k
locations of P

Space

Needs T?

Bytes per input
character

m = | T |, n = | P |, k = # occurrences of P in T

O(n) O(n log m) O(n)

O(n + k) O(n log m) O(n)

O(n + k) O(n log m + k) O(n + k)

O(m) O(m) O(m)

yes yes no

>15 ~4 ~0.5

Limitations of exact pattern matching

But what if I was actually trying to look up ‘string’?

Limitations of exact pattern matching

If I ban “bad word”, what happens to “b@d w0rd”?

Approximate Pattern Matching

Approximate Pattern Matching
 Score = 248 bits (129), Expect = 1e-63
 Identities = 213/263 (80%), Gaps = 34/263 (12%)
 Strand = Plus / Plus

 Query: 161 atatcaccacgtcaaaggtgactccaactcca---ccactccattttgttcagataatgc 217
 ||||||||||||||||||||||||||||| | | | || ||||||||||||||
 Sbjct: 481 atatcaccacgtcaaaggtgactccaact-tattgatagtgttttatgttcagataatgc 539

 Query: 218 ccgatgatcatgtcatgcagctccaccgattgtgagaacgacagcgacttccgtcccagc 277
 ||||||| ||||||||||||||||||||| || | ||||||||||||
 Sbjct: 540 ccgatgactttgtcatgcagctccaccgattttg-g------------ttccgtcccagc 586

 Query: 278 c-gtgcc--aggtgctgcctcagattcaggttatgccgctcaattcgctgcgtatatcgc 334
 | || | | ||||||||||||||||||||||||||||||||||||||| |||||||||
 Sbjct: 587 caatgacgta-gtgctgcctcagattcaggttatgccgctcaattcgctgggtatatcgc 645

 Query: 335 ttgctgattacgtgcagctttcccttcaggcggga------------ccagccatccgtc 382
 ||||||||||||||||||||||||||||||||||| |||||||||||||
 Sbjct: 646 ttgctgattacgtgcagctttcccttcaggcgggattcatacagcggccagccatccgtc 705

 Query: 383 ctccatatc-accacgtcaaagg 404
 |||||||| |||||||||||||
 Sbjct: 706 atccatatcaaccacgtcaaagg 728

Approximate Pattern Matching

Input: A text T, a pattern P, and a distance d

Output: All positions in T where P has at most d mismatches or edits

There would have been a time for such a wordT:
P: word

Match!Not a match!

word wordAlignment 1: Alignment 2:

Distance 2 match! Distance 0 match!

Approximate Pattern Matching

What is the distance between these two strings?

1 0 0 1 1

0 0 1 1 0

X:

Y:

Approximate Pattern Matching

What is the distance between these two strings?

1 0 0 1 1

0 0 1 1 0

X:

Y:

1 0 0 1 1
 | |
0 0 1 1 0

X:

Y:

1 0 0 1 1 -
 | | | |
- 0 0 1 1 0

X:

Y:

Hamming distance is 3! Edit distance is 2!

Approximate Pattern Matching

How can I describe the relationship between two strings?

1 0 0 1 1
 | |
0 0 1 1 0

X:

Y:

1 0 0 1 1 -
 | | | |
- 0 0 1 1 0

X:

Y:

Approximate Pattern Matching

A substitution replaces one character with another

G G A A A A A G A G G T A G C G G C G T T T A A C A G T A G
 | | | | | | | |
 G T A A C G G C G

T:

P:

Mismatch
(Substitution)

Described as the character swap needed to convert T to P

Hamming Distance

G A G G T A G C G G C G T T

G T G G T A A C G G G G T T

X:

Y:

T G G C C G C G C A A A A A C A G C

T G A C C G C G C A A A A C A G C T

X:

Y:

The minimum number of substitutions to turn one string into another.

Hamming Distance

G A G G T A G C G G C G T T

G T G G T A A C G G G G T T

G A G G T A G C G G C G T T
| | | | | | | | | | |
G T G G T A A C G G G G T T

X:

Y:
Hamming distance = 3

T G G C C G C G C A A A A A C A G C

T G A C C G C G C A A A A C A G C T

X:

Y:

The minimum number of substitutions to turn one string into another.

Hamming Distance

G A G G T A G C G G C G T T

G T G G T A A C G G G G T T

G A G G T A G C G G C G T T
| | | | | | | | | | |
G T G G T A A C G G G G T T

X:

Y:
Hamming distance = 3

T G G C C G C G C A A A A A C A G C

T G A C C G C G C A A A A C A G C T

X:

Y:
Hamming distance = 6

T G G C C G C G C A A A A A C A G C
| | | | | | | | | | | |
T G A C C G C G C A A A A C A G C T

The minimum number of substitutions to turn one string into another.

Hamming Distance
The minimum number of substitutions to turn one string into another.

G G C C G G C

C C G G G G G

X:

Y:

T A T A T A

A T A T A T

X:

Y:

Hamming Distance
The minimum number of substitutions to turn one string into another.

G G C C G G C

C C G G G G G

X:

Y:
Hamming distance = 5

T A T A T A

A T A T A T

X:

Y:

G G C C G G C
 | |
C C G G G G G

Hamming Distance
The minimum number of substitutions to turn one string into another.

G G C C G G C

C C G G G G G

X:

Y:
Hamming distance = 5

T A T A T A

A T A T A T

X:

Y:
Hamming distance = 6

G G C C G G C
 | |
C C G G G G G

T A T A T A

A T A T A T

Approximate Pattern Matching

An insertion adds a character, shifting all other characters back

G G A A A A A G A G G T A G C - G C G T T T A A C A G T A G
 | | | | | | | |
 G T A G C G G C G

Insertion

T:

P:

Insertion is relative! What edits convert T to P

G G A A A A A G A G G T A G C G G C G T T T A A C A G T A G
 | | | | | | | |
 G T - G C G G C G

Approximate Pattern Matching

An deletion removes a character, shifting all other characters forward

P:

Deletion is relative! What edits convert T to P

Deletion

T:

Edit Distance
The minimum number of substitutions, insertions, or deletions (edits!)
needed to turn one string into another (from X to Y)!

T G G C C G C G C A A A A A C A G C

T G A C C G C G C A A A A C A G C T

X:

Y:

G C G C T

G C T

X:

Y:

Edit Distance
The minimum number of substitutions, insertions, or deletions (edits!)
needed to turn one string into another (from X to Y)!

T G G C C G C G C A A A A A C A G C

T G A C C G C G C A A A A C A G C T

X:

Y:
Edit distance = 3

T G G C C G C G C A A A A A C A G C -
| | | | | | | | | | | | | | | |
T G A C C G C G C A A A A - C A G C T

G C G C T

G C T

X:

Y:

Edit Distance
The minimum number of substitutions, insertions, or deletions (edits!)
needed to turn one string into another (from X to Y)!

T G G C C G C G C A A A A A C A G C

T G A C C G C G C A A A A C A G C T

X:

Y:
Edit distance = 3

T G G C C G C G C A A A A A C A G C -
| | | | | | | | | | | | | | | |
T G A C C G C G C A A A A - C A G C T

G C G C T

G C T

X:

Y:

G C G C T
 | | |
- - G C T

G C G C T
| | |
G C - - T

Edit distance = 2
G G C C T
| | |
G - - C T

Edit Distance
The minimum number of substitutions, insertions, or deletions (edits!)
needed to turn one string into another (from X to Y)!

G G C C G G C

C C G G G G G

X:

Y:

T A T A T A

A T A T A T

X:

Y:

Edit Distance
The minimum number of substitutions, insertions, or deletions (edits!)
needed to turn one string into another (from X to Y)!

G G C C G G C

C C G G G G G

X:

Y:
Edit distance = 5

T A T A T A

A T A T A T

X:

Y:

G G C C G G C - -
 | | | |
- - C C G G G G G

G G C C G G C
 | |
C C G G G G G

Edit Distance
The minimum number of substitutions, insertions, or deletions (edits!)
needed to turn one string into another (from X to Y)!

G G C C G G C

C C G G G G G

X:

Y:
Edit distance = 5

T A T A T A

A T A T A T

X:

Y:
Edit distance = 2

G G C C G G C - -
 | | | |
- - C C G G G G G

T A T A T A -
 | | | | |
- A T A T A T

G G C C G G C
 | |
C C G G G G G

Edit Distance

c a r r t

c a r r y
c a r e t

1 substitution

c a r r o t
1 insertion

c a r t
1 deletion

Edit Distance
 Score = 248 bits (129), Expect = 1e-63
 Identities = 213/263 (80%), Gaps = 34/263 (12%)
 Strand = Plus / Plus

 Query: 161 atatcaccacgtcaaaggtgactccaactcca---ccactccattttgttcagataatgc 217
 ||||||||||||||||||||||||||||| | | | || ||||||||||||||
 Sbjct: 481 atatcaccacgtcaaaggtgactccaact-tattgatagtgttttatgttcagataatgc 539

 Query: 218 ccgatgatcatgtcatgcagctccaccgattgtgagaacgacagcgacttccgtcccagc 277
 ||||||| ||||||||||||||||||||| || | ||||||||||||
 Sbjct: 540 ccgatgactttgtcatgcagctccaccgattttg-g------------ttccgtcccagc 586

 Query: 278 c-gtgcc--aggtgctgcctcagattcaggttatgccgctcaattcgctgcgtatatcgc 334
 | || | | ||||||||||||||||||||||||||||||||||||||| |||||||||
 Sbjct: 587 caatgacgta-gtgctgcctcagattcaggttatgccgctcaattcgctgggtatatcgc 645

 Query: 335 ttgctgattacgtgcagctttcccttcaggcggga------------ccagccatccgtc 382
 ||||||||||||||||||||||||||||||||||| |||||||||||||
 Sbjct: 646 ttgctgattacgtgcagctttcccttcaggcgggattcatacagcggccagccatccgtc 705

 Query: 383 ctccatatc-accacgtcaaagg 404
 |||||||| |||||||||||||
 Sbjct: 706 atccatatcaaccacgtcaaagg 728

Substitution

Deletion

Insertion

Approximate Pattern Matching

How can I describe the relationship between two strings?

1 0 0 1 1
 | |
0 0 1 1 0

X:

Y:

1 0 0 1 1 -
 | | | |
- 0 0 1 1 0

X:

Y:

Edit string: Describe the changes you would make to X to become Y

Approximate Pattern Matching

Input: A text T, a pattern P, and a distance d

Output: All positions in T where P has at most d mismatches or edits

Hamming Distance: Min number substitutions (mismatches)

Edit Distance: Min number edits (substitution, insertions, deletions)

Approximate Pattern Matching
 = 0, 1Σ 000P =

Hamming Distance 1 strings:

Edit Distance 1 strings:

Approximate Pattern Matching
 = 0, 1Σ 000P =

Hamming Distance 1 strings:

Edit Distance 1 strings: 100

010

001

1000

0100

0010

0001

100 010 001

0000

00

Approximate Pattern Matching
P = abb d = 1

Using Hamming distance, what are valid approximate matches for P?

A) aba B) aabb

C) bbb D) ab

Using edit distance, what are valid approximate matches for P?

Approximate Pattern Matching
How do we find all approximate matches for a pattern in a text?

There would have been a time for such a wordT:
P: word

word word word word word word word word word
 word word word word word word word word
 word word word word word word word word
 word word word word word word word word
 word word word word word word word word

Approximate Pattern Matching
How do we find all approximate matches for a pattern in a text?

6
5
3
1
0
4
2

$
A$
ANA$
ANANA$
BANANA$
NA$
NANA$

Suffix Array

$ B A N A N A
A $ B A N A N
A N A $ B A N
A N A N A $ B
B A N A N A $
N A $ B A N A
N A N A $ B A

FM IndexSuffix TreeBoyer-Moore

A C G T
A 0 0 1 2
C 0 1 0 1
G 0 1 2 0
T 0 1 2 3

Can we use our efficient exact pattern matching algorithms?

1011101011011010001010

Approximate Pattern Matching
Can we use our efficient exact pattern matching algorithms?

For Hamming distance (mismatches), we can!

P

1011101011011010001010

Approximate Pattern Matching
Can we use our efficient exact pattern matching algorithms?

For Hamming distance (mismatches), we can!

P

1011101011011010001010

Approximate Pattern Matching
Can we use our efficient exact pattern matching algorithms?

For Hamming distance (mismatches), we can!

P

1011111011011010001010
1011101011011010000010
1011101011111010001010
1011101011011110001010

1011101011011010001010

Approximate Pattern Matching
Can we use our efficient exact pattern matching algorithms?

For Hamming distance (mismatches), we can!

P
u v

If P occurs in T with 1 mismatch, then u or v has no mismatch

We can search for u and v in T as a proxy for P!

Approximate Pattern Matching

P
p0 p1 p2 p3 pk...

If P occurs in T with up to k mismatches…

Approximate Pattern Matching

P
p0 p1 p2 p3 pk...

If P occurs in T with up to k mismatches, then if we split P into k+1
partitions, at least one of p0, p1, ..., pk must appear with 0 mismatches.

Approximate Pattern Matching
If P occurs in T with up to k mismatches, then if we split P into k+1
partitions, at least one of p0, p1, ..., pk must appear with 0 mismatches.

XXX X

X X X X

XX X X 5 partitions
4 mismatches (X)

Approximate Pattern Matching

k+1 pigeons, k holes?

At least one hole has two pigeons!

k pigeons, k+1 holes?

At least one hole is empty!

Pigeonhole principle: A direct relationship between containers and
objects from either perspective below.

There would have been a time for such a wordT:
P: word

Pigeonhole principle lets us use exact matching algorithms:

Approximate Pattern Matching

There would have been a time for such a wordT:
P: word

Pigeonhole principle lets us use exact matching algorithms:

Approximate Pattern Matching

u: wo
v: rd

 wo wo
 rd

1) Given k allowed mismatches, break the pattern up into k+1 partitions

What do we do with these partial matches?

Approximate Pattern Matching
Counting mismatches requires verifying non-matching partitions

T

p0 p1 p2 p3

matchverifyverify verify

THERE WOULD HAVE BEEN A TIME
WORD

This is known as the seed and extend heuristic

T

matchverifyverify verify verify

p

Only consider mismatches while verifying a seed hit

p0 p1 p2 p4p3

Approximate Pattern Matching

There would have been a time for such a wordT:
 word word
 word

There would have been a time for such a wordT:
P: word

Seed and Extend Approximate Pattern Matching

u: wo
v: rd

 word word
 word

1) Given k allowed mismatches, break the pattern up into k+1 partitions

2) For every partial exact match, inspect the full alignment

3) Return all matches (but don’t duplicate!)

(Count mismatches in the remaining characters in the alignment)

THE CART WAS CARRIED BY THE CATST:
P: CATS

Approximate Pattern Matching
Find all edit distance 2 approximate matches

THE CART WAS CARRIED BY THE CATST:
P: CATS

Approximate Pattern Matching
Find all edit distance 2 approximate matches

THE CART WAS CARRIED BY THE CATS
THE CART WAS CARRIED BY THE CATS
THE CART_WAS CARRIED BY_THE CATS
THE CART_WAS CARRIED BY THE CATS

C
A
T
S

As a heuristic, seed and extend reduces the overall search space

Approximate Pattern Matching

There would have been a time for such a wordT:
 word word
 word

Consider the likelihood of seeing ‘wo’ or ‘rd’ by chance:

256 characters :
1

256

2
= 0.000015

Approximate Pattern Matching in Genomics

CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTAGGCCTTC
Partition Seed: Length ~40

T: Length 3 billion

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT
CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC
GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT
ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA
ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA
AACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAAAA
ACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCGGTATGCAC
TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCACTCCCATACTACTAAT
CTCATCAATACAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATA
CCCCGAACCAACCAAACCCCAAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAA
GCAATACACTGACCCGCTCAAACTCCTGGATTTTGGATCCACCCAGCGCCTTGGCCTAAA
CTAGCCTTTCTATTAGCTCTTAGTAAGATTACACATGCAAGCATCCCCGTTCCAGTGAGT
TCACCCTCTAAATCACCACGATCAAAAGGAACAAGCATCAAGCACGCAGCAATGCAGCTC
AAAACGCTTAGCCTAGCCACACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATAA
ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGC
GGTCACACGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGATCACCCCC
TCCCCAATAAAGCTAAAACTCACCTGAGTTGTAAAAAACTCCAGTTGACACAAAATAGAC
TACGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAGACCCAAACTGGGATTAGA
TACCCCACTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCTCGCCAGAA
CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATATCCCTCTAGAGG
AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGCTCAGCCTATATA
CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTACCCACGTAAAG
ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTCTACCCCAG
AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAAACTAAG
AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCCTCCTC
AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACAAGT
CGTAACCTCAAACTCCTGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAAG
AAGCACCCAACTTACACTTAGGAGATTTCAACTTAACTTGACCGCTCTGAGCTAAACCTA
GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA
AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG
AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA
TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT
ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA
GGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGATAGAATCTTAG
TTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTC
CAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAACCTTGTAGAGAGAGTAAAAAATTTA

Likelihood of random seed string:

of times seed will occur by chance in T:

1
4

40
= 8.27e − 25

2.48e − 15

Likelihood * (~ length)

Approximate Pattern Matching

Pros: Cons:

P
p0 p1 p2 p3 pk...

“Seed and extend” approach to pattern matching

Approximate Pattern Matching

Pros: Cons:

P
p0 p1 p2 p3 pk...

Reuse exact matching algs Slow for large k

k+1 exact matching problems,
one per partition

Works for Hamming and edit distance*

* we don’t know how to do edit distance verification yet

“Seed and extend” approach to pattern matching

As a heuristic, reduces search space

small partitions matching
many times by chance

Assignment 10: a_pigeon
Learning Objective:

Preprocess text into kmers and a hash table

Use pigeonhole principle to perform approximate matching

Consider: Do the partitions need to be contiguous runs of characters? Do
they need to all be the same length?

kmerMap text_to_kmer_map(string & T, int k)

string & T : The input text — can be very large this week!

int k : The fixed size for each kmer (substring)

Input:

kmerMap : unordered_map<string, vector<int>>

Output:

aaaaabbbbbbT: k = 4

kmerMap text_to_kmer_map(string & T, int k)

string & T : The input text — can be very large this week!

int k : The fixed size for each kmer (substring)

Input:

kmerMap : unordered_map<string, vector<int>>

Output:

aaaaabbbbbbT:
aaaa bbbb
 aaaa bbbb
 aaab bbbb
 aabb
 abbb

aaaa : {0, 1}
aaab : {2}
aabb : {3}
abbb : {4}
bbbb : {5, 6, 7}

k = 4 Output

vector<Seed> partitionPattern(string P, int np)

string P : The input pattern — can be large this week!

int np : The number of non-overlapping partitions to split P

typedef std::pair<std::string, int> Seed;

vector<Seed> : Vector of partitioned strings and their index

ABCDEFGHP: np = 2

Input:

Output:

vector<Seed> partitionPattern(string P, int np)

string P : The input pattern — can be large this week!

int np : The number of non-overlapping partitions to split P

typedef std::pair<std::string, int> Seed;

vector<Seed> : Vector of partitioned strings and their index

ABCDEFGHP: np = 2

Input:

Output:

{ {ABCD, 0}, {EFGH, 4} }

vector<int> approximate_search(fname, P, mm)

string fname : The file storing the text T

string P : The pattern text

Input:

vector<int> : The index positions in T of all approximate matches

Output:

int mm : The number of allowed mismatches

T

match

p3

verifyverify verify verify

p0 p1 p2 p4

Bonus Slides

FM Index w/ mismatches

Start with shortest suffix, then match successively longer suffixes

$ a b a a b a0

a0 $ a b a a b
a1 a b a $ a b
a2 b a $ a b a1

a3 b a a b a $
b a $ a b a a2

b a a b a $ a3

F L

P = aba

Easy to find all the rows
beginning with a

Keep track of mismatches for each suffix

aba

FM Index w/ mismatches

Start with shortest suffix, then match successively longer suffixes

$ a b a a b a0

a0 $ a b a a b
a1 a b a $ a b
a2 b a $ a b a1

a3 b a a b a $
b a $ a b a a2

b a a b a $ a3

F L

P = aba

But we count everything else as
a potentially valid mismatch

Keep track of mismatches for each suffix

aba

$ a b a a b a0

a0 $ a b a a b
a1 a b a $ a b
a2 b a $ a b a1

a3 b a a b a $
b a $ a b a a2

b a a b a $ a3

F L

P = abaaba

We have rows beginning with a, now we want rows beginning with ba

$ a b a a b a0

a0 $ a b a a b
a1 a b a $ a b
a2 b a $ a b a1

a3 b a a b a $
b a $ a b a a2

b a a b a $ a3

F L

P = aba

2
0
0
1

2
2

No longer have just one search range!

FM Index w/ mismatches

$ a b a a b a0

a0 $ a b a a b
a1 a b a $ a b
a2 b a $ a b a1

a3 b a a b a $
b a $ a b a a2

b a a b a $ a3

F L

P = abaaba

We have rows beginning with ba, now we seek rows beginning with aba

$ a b a a b a0

a0 $ a b a a b
a1 a b a $ a b
a2 b a $ a b a1

a3 b a a b a $
b a $ a b a a2

b a a b a $ a3

F L

P = aba

Only works for Hamming Distance (mismatches)!

2

0
0

FM Index w/ mismatches

