String Algorithms and Data Structures

Introduction and Pattern Matching

CS 199-225 September 9, 2024
Brad Solomon

ABLD

B
UNIVERSITY OF BB B

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Brad Solomon

Teaching Assistant Professor, Computer Science
2233 Siebel Center for Computer Science

Email: bradsol@illinois.edu

Office Hours:
Thursdays, 11:00 AM - 12:00 PM >
... Or by appointment &

https://courses.engr.illinois.edu/cs225/info/office-hours/

mailto:bradsol@illinois.edu
https://courses.engr.illinois.edu/cs225/info/office-hours/

CS 225 Honors Staff Introductions

Who are you?
{Bo% l¢ Ft
AR ANSTYEN
Take a moment to introduce yourself to your neighbor! Cant .

(Your name, a hobby you enjoy, and one thing you hope to get
out of this class)

Piazza Sign up Link: https://piazza.com/illinois/fall2024/cs199225

https://piazza.com/illinois/fall2024/cs199225

What is this class about?

/\Exact string matching %~ Q- Chest Codes

df
1f-i 2 ' =
Compressed self indexes » g »

Query: 161 atatcaccacgtcaaaggtgactccaactcca---ccactccattttgtt

Inexact pattern matching LTI 1 11 11 1T

Sbjct: 481 atatcaccacgtcaaaggtgactccaact-tattgatagtgttttatgtt

What is this class about?

L/,
.\O(\'b\
0% String Algorithms and Data Structures
cov
Exact string matching 5 [Chestcodes

df
Compressed self-indexes » é »

Query: 161 atatcaccacgtcaaaggtgactccaactcca---ccactccattttgtt

Inexact pattern matching LTI 1 11 11 1T

Sbjct: 481 atatcaccacgtcaaaggtgactccaact-tattgatagtgttttatgtt

What will you get out of this class? _\\

Understand fundamental string algorithms

Experience applying data structures, algorithms, and algorithm
design principles to real world problems @ (
Justify implementation choices based on theoretical or practical

considerations J

Build a foundation for future data science projects Q

Course Webpage @

https://courses.grainger.illinois.edu/cs225/fa2024/pages/honors.html

All course information and links can be found here!

Mediaspace recordings

Piazza

Syllabus

https://courses.grainger.illinois.edu/cs225/fa2024/pages/honors.html

Syllabus
Please read — many important topics:
Course Goals & Topics
Course Expectations
Grading
Commitments to Diversity, Equity, Inclusion
Commitments to Mental Health

Ethics and Academic Integrity Policies

Course Expectations

Weekly assignments (11 total):

Small assignments (~ 1-3 hours / week)

Must pass at least 10 of them (80% is passing)

Must submit your own work
———

O&veek extensions for 80% credit

Course Expectations

Class participation:
No attendance grades

Ask questions (synchronously or asynchronously)

% —
Participate in bf%k@_s\ano@){

Mental Health

This class should be low-stress, light work-load.

&

UIUC offers a variety of confidential services:

Counseling Center: 217-333-3704
610 East John Street Champaign, IL 61820

McKinley Health Center: 217-333-2700
1109 South Lincoln Avenue, Urbana, lllinois 61801

Diversity, Equity, and Inclusion @

“If you witness or experience racism, discrimination, micro-aggressions,
or other offensive behavior, you are encouraged to bring this to the
attention of...”

Staff (CAs and TAs for CS 225)

Faculty (Brad Solomon)

P

Campus Belonging Office (Link)
The Office of Student Conflict Resolution (Link)

CS CARES (Link)

/

https://diversity.illinois.edu/diversity-campus-culture/belonging-resources/
http://conflictresolution.illinois.edu/policies/report-violation/
https://cs.illinois.edu/about/cs-cares

Learning Objectives

Review fundamentals of strings
I

Introduce{exact pattern matching problem

What is a string?
String S is a finite sequence of characters

Characters are drawn from alphabet 2, usually assumed finite
\
frs

Nucleic acid alphabet: { A, C, G, T} é' 1 le "

p
English: { ABCDEFGHLIKLMNOPQRSTUVWXYZ} © |t

What are some other alphabets we could use?

Digike (0-9) ol symdols [spmkd b aloois

B nory (o,\> L ASCT® 24
L7 Vl\:((\m

What is a string... in C++7?

d
ch/am_—gxte (8-bit) character encoding [ASCII 256]

———

_ std::string: uses char alphabet (by default), has significant operation

support o

——

string_main.cpp

#include <string>
#include <iostream>

int main() {
char c[] = "Hello World";
std: :string str = "Hello World";

return 0;

RPRoOowoOoOJoOUIdWMNDER

N

}

Fundamental operations (4D .\/)

Math Strings

—-71- Con quf@/pq)‘ S

o SalsPSI’/‘T/(j / (bmoe Ot \»)
C}Q [649 'H)

/ T Derka [ey

K

WM;"} /ﬂ’lq/{(now S)ff\.nj

Fundamental string operations =4 ©

“How efficient is my algorithm at searching for a given pattern P ?”

L €N @“H’) / S, zo

“How much memory do | need to allocate for this text file?”

Fundamental string operations

Size of S, |S|: The number of characters in S.

S=“How big?”

Pl= &

d bl nul phe

1O

Fundamental string operations
Size of S, |S|: The number of characters in S.
| [

S=“How big?”

S| =8

Wol1121314!51|6

Fundamental string operations

Size of S, |S|: The length of S (in terms of bytes).

S.length()
size.cpp
1| #include <string>
2| #include <iostream>
3
4| int main() {
5 std: :string S = "Is this a string?";
6 std: :string T = "No, this is Patrick.";
=
8 std: :cout << S.length() << std::endl;
o) std: :cout << T.length() << std::endl;
10
11 return O;
12| }
13
14

Fundamental string operations

“Is this book about data structures?”

“Is this student enrolled at UIUC?”

———

6@4@ :Jr7

Fundamental string operations

S equals T if each character, in order, is the same

S ==T1

2T —
equals.cpp

1| #include <string>

2| #include <iostream>

3

4| int main() {

5 std::string S = "Thing 1";

6 std: :string T = "Thing 1";

=

8 if (S == T){

9 std: :cout < "S == T" << std::endl;
10 } else {
11 std::cout << "S !'= T" << std::endl;
12 }
13 return O;
14| }

Fundamental string operations

S equals T if each character, in order, is the same

S ==T
char_equals.cpp
1| #include <string>
2| #include <iostream>
3 N\
4| int main() { 7 (O”‘"PQ‘\PS "\5\“’6‘}5 /\c)\\
5 char S[] = "Thing 1";
6 char T[] = "Thing 1"; 6 \J“‘Veg
=
8 if (S == T){ \
9 std::cout << "S == T" << std::endl; (OﬂPQ/fé P‘-\'ﬂ‘(’/ 4(\}\legk
3
10 } else {
11 std::cout << "S !'= T" << std::endl;
12 }
13 return O;
14| }

Fundamental string operations

S equals T if each character, in order, is the same

O

S ==T
char_equals.cpp
(llf substring.cpp:8:9: warning: array comparison always evaluates to false [-Mtoutological-compare]
| if (5 ==T)
3 A
4| int main() {
5 char S[] = "Thing 1";
6| char T[] = "Thing 1"; S @Y, u=) T
7 ‘RL'A
8 if (S == T){ |”
9 std: :cout < "S == T" << std::endl;
10 } else { —
11 std::cout << "S !'= T" << std::endl; _ -
12 }
13 return O;
14| }

GTATGCACGCGATAG
TAGCATTGCGAGACG
TGTCTTTGATTCCTG
GACGCTGGAGCCGGA
TATCGCACCTACGTT
CACGGGAGCTCTCCA
GTATGCACGCGATAG
GCGAGACGCTGGAGC
CCTACGTTCAATATT
GACGCTGGAGCCGGA
TATCGCACCTACGTT
CACGGGAGCTCTCCA

Genome

TATGTCGCAGTATCT
GGTATGCACGCGATA
CGCGATAGCATTGCG
GCACCCTATGTCGCA
CAATATTCGATCATG
TGCATTTGGTATTTT
ACCTACGTTCAATAT
CTATCACCCTATTAA
GCACCTACGTTCAAT
GCACCCTATGTCGCA
CAATATTCGATCATG
TGCATTTGGTATTTT

Fundamental string operations
Reads

CACCCTATGTCGCAG
TGGAGCCGGAGCACC
GCATTGCGAGACGCT

GTATCTGTCTTTGAT
GATCACAGGTCTATC
CGTCTGGGGGGTATG
TATTTATCGCACCTA
CTGTCTTTGATTCCT
GTCTGGGGGGTATGC
GTATCTGTCTTTGAT
GATCACAGGTCTATC
CGTCTGGGGGGTATG

‘\A ™ T:%yo\f\s QJQ/\GI P'?é

o

L

GAGACGCTGGAGCCG
CGCTGGAGCCGGAGC
CCTATGTCGCAGTAT
CCTCATCCTATTATT
ACCCTATTAACCACT
CACGCGATAGCATTG
CCACTCACGGGAGCT
ACTCACGGGAGCTCT
AGCCGGAGCACCCTA
CCTCATCCTATTATT
ACCCTATTAACCACT
CACGCGATAGCATTG

CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGOACCCTATGTCGCAGTATCTGTCTTTGATTCCTG

Subghelny) Cyral ty

—

Fundamental string operations

Concatenation of S and T: characters of S followed by characters of T

S=*“Beep” T="“Boop”

Y
'
What is the strin& %ee_F Beop

v\
What is the string 7SS ? 3 1

Fundamental string operations

Concatenation of S and T: characters of S followed by characters of T

S + T

] |

N\
concatcpp

1| #include <string>

2| #include <iostream>

3

4| int main() {

5 std: :string S = "Beep";

6 std: :string T = "Boop";

=

8 std::cout < S + T << std::endl;

9 std::cout << T + S << std::endl;
10
11 std::cout << S + '$S' + T << std::endl;
12 std::cout << T + '$' + S << std::endl;
13| }
14

Fundamental string operations Q Egalty

Subs4r
“Is this book about data structures?” }> S0y

S:Data Str

1.1 Why Compac

tures

Data Structures?

7-: Google’s stated mission, “to organize the world’s information and make it universally

accessible and useful,” could not better capture the immense ambition of modern soci-
ety for gathering all kinds of data and putting them to use to improve our lives. We are
collecting not only huge amounts of data from the physical world (astronomical, cli-
matological, geographical, biological), but also human-generated data (voice, pictures,
music, video, books, news, Web contents, emails, blogs, tweets) and society-based
behavioral data (markets, shopping, traffic, clicks, Web navigation, likes, friendship

L —

Fundamental string operations

S is a substring of T if there exists (possibly empty) strings u and v

such that | = uSv T

A substring is a sequence of characters (a string) contained within
another string

S: pepper

T: I_1ike_(pepperboni_pizza

U V4

Fundamental string operations

A substring of S is a string occurring inside S

S.substr(size t pos, size t len)

substring.cpp

#include <string> \ (
_ _ e | |
#include <iostream> O

int main() { ¢

std: :string T = “Hello my name is ";
~ e —

std: :cout << T.substr(l,4) << std::endl;

return 0O;

}

CwWwoOoOJoUldWN =

[

Fundamental string operations @
A substring of S is a string occurring inside S

S.substr(size t pos, size t len)

substring.cpp

#include <string>
#include <iostream>

int main() {
std::string T = “Hello my name is ";

std: :cout << T.substr(l,4) << std::endl;

return 0O;

}

CwWwoOoOJoUldWN =

[

of112[374ls5]6]7[8]910[11]12[13[14]15]16
HYel[l]|1l]o m|y nla|m|e i |

Fundamental string operations

S is a prefix of T if there exists a string v such that T = Sv

A prefix is a substring T=uSv where u="”

—

I:. GTTATAGCTGAT
GTTATAGCTGAT

7 S vV

Sb\bs*,:,\? Storks ot adex O

Fundamental string operations

Sis a prefix of T if there exists a string v such that T = Sv
INGTTATAGCTGAT

(ETTATAGCTGAf)
TTATAGCTGA
GTTATAGCTG
GTTATAGCT
GTTATAGC
GTTATAG
GTTATA
GTTAT
GTTA
GTT
GT
G

Fundamental string operations

S is a prefix of T if there exists a string v such that T = Sv

I: Pattern matching

C—

Patter /

matching)Kf
Patrick)<

Fundamental string operations

S is a prefix of T if there exists a string v such that T = Sv

\ I/
I: Pattern matching

Patter

matching

EEEYick

X
X

Fundamental string operations

S is a suffix of T if there exists a string u such that T=uS

A suffix is a substring T=uSv where v=""

I: GTTATAGCTGAT
GTTATAGCTGAT
u S /‘

Subgtiing ek

ens

a‘\/ k,s\- (lﬂd‘f

Fundamental string operations

S is a suffix of T if there exists a string u such that T=uS$

ILGTTATAGCTGAT
GTTATAGCTGAT
TTATAGCTGAT
TATAGCTGAT
ATAGCTGAT
TAGCTGAT
AGCTGAT
GCTGAT

CTGAT

TGAT

GAT

AT

T

Fundamental string operations

S is a suffix of T if there exists a string u such that T=uS

I: Pattern matching

ing
tern

ring

Fundamental string operations

S is a suffix of T if there exists a string u such that T=uS
\ .
I:. Pattern matching

ing

tern

\ing

X
X

Fundamental string operations

Size, |S| S.length()
Equals, S==T S ==T
Concatenation, ST S + T

Substring, uSv S.substr(pos, 1len)

Exact Pattern Matching

Pattern, P Text T

SR

Find instancesof Pin T

Exact Pattern Matching

Pattern, P Text T

N

Find instancesof Pin T

‘instances’: An exact, full length copy

Exact Pattern Matching

Find places where pattern P occurs as a substring of text T. Each
such place is an occurrence or match.

P: word
T: There would have been a time for such a word

Exact Pattern Matching

Find places where pattern P occurs as a substring of text T. Each
such place is an occurrence or match.

P: word

I: There would have been a time for such a:word
word ‘word:

Exact Pattern Matching

Find places where pattern P occurs as a substring of text T. Each
such place is an occurrence or match.

P: word

T There would have: been a time for such a gwor‘dg
Alignment 1: word Alignment 2: :word:

Alignment: a way of putting P’s characters opposite T’s. May or
may not correspond to a match.

Exact Pattern Matching

Find places where pattern P occurs as a substring of text T. Each
such place is an occurrence or match.

P: word
T: There would have: been a time for such a gwor‘dg
Alignment 1: ‘word: Alignment 2: :word:
Not a match! Match!

Alignment: a way of putting P’s characters opposite T’s. May or
may not correspond to a match.

Exact Pattern Matching

What's a simple algorithm for exact matching?

P: word
T:- There would have been a time for such a word

L ==p rovs). ey Chwack.

(7 SV b.é\r,f,b || [
< o Pore & t’@l««\,*y
—

Exact Pattern Matching (owm} OF Makcly

What's a simple algorithm for exact matching? ‘doy

P: word J

T: There would have been a time for such a word
word word word word word word word word word
word word word word word word word word \One
word word word word word word word wonrd occurrence
word word word word word word word word
word word word word word word word word

Try all possible alignments. For each, check if it matches. This
is the naive algorithm.

Assignment 1: a_naive

Learning Objective:

Conceptualize exact pattern matching ive search

Demonstrate understanding of fundamental operations

Think about as you code: is naive search a good solution?

\/\/\/\

End-of-class brainstorm

How can we improve the naive algorithm?

End-of-class brainstorm

How can we improve the naive algorithm?

... if you have infinite space?

Store all scabstrnge of T Text O(l)’é%#
~ L Oof all et

A < 1, 5,8
At 21,2

End-of-class brainstorm

firple.
[
... if I tell you the pattern ahead of time?

> —
How 2 Ve I = /

S(/I Es)ﬁ\.mj {7 PalH'G’//\ —f— O/]\Y (WS;AOr Mml'd«ls wolrael,

How can we improve the naive algorithm?

A A‘p LlO\\/Q Pa“"’éme 5 C‘naa(Lffﬁ
- e 2 BB

7 T9 (XX

e 'SR B!

\ Patiern lhas 0O 2(

End-of-class brainstorm

How can we improve the naive algorithm?

... if I tell you the text ahead of time?

< -

tepeam 6 Ty feEn M e s

ambwe werRs

LS

Com‘m/e ek o pba S bixre

=

End-of-class brainstorm

How can we improve the naive algorithm?

... if you have infinite space?

... if I tell you the pattern ahead of time?

... if I tell you the text ahead of time?

