

lab_ml: Lazy Machine Learning

Welcome to Lab Machine Learning!

Overview:
In this lab you will learn how to teach computer how to learn to win a
game. You will use a graph to represent a state space.

Using a graph as a state space:
Before an AI problem can be solved it must be represented as a state
space. The state space is then searched to find a solution to the
problem. A state space essentially consists of a set of nodes
representing each state of the problem, arcs between nodes
representing the legal moves from one state to another, an initial state
and a goal state. Each state space takes the form of a tree or a graph.
For visualization take a look partial state space for tic-tac-toe:

The Game of Nim
A game starts with k tokens. Players alternate turns with Player 1
starting the game. Each turn, a player may pick up 1 or 2 tokens. The
player who picks up last token wins.

Exercise 1.1: How would you represent each state in this game?
HINT: What do we need to keep track of in each state?
Represent each of the states using the player number and the
tokens.

Exercise 1.2: Connect the states in the following state space graph for a
game with starting tokens k = 3: Nim(3)

Exercise 1.3: Which states are logically unreachable?
p1-2 and p2-3

Reinforcement learning:
Finally, we need to apply reinforcement learning. In reinforcement
learning, an algorithm is rewarded for making a good decision and
punished for making a poor decision. We will define a good decision
as all decisions made by the player who won. Therefore, if Player 1
took the last token, all choices made by Player 1 are rewarded.

The reward is captured in our algorithm as the edge weight. When we
consider a path through the graph, we can find that all edges along a
path that has Player 1 winning (eg: the last vertex in the path goes to
Player 2 with no tokens remaining, or "p2-0", meaning that Player 1
took the last token), then all choices made by Player 1 (edges where
Player 1 is the source vertex) are rewarded by increasing the edge
weight by +1 and all choices made by Player 2 are punished by
changing the edge weight by -1.

Exercise 2.1:
Let’s label the state “Player 1 - 5 tokens available” as p1-5.
What is the label of the state where p1 wins? What about where p2
wins?
When p1 wins - p2-0
When p2 wins - p1-0

Exercise 2.2: Given initial edge weights as 0, what will be updated
edge weights after the next two games :
1. p1-5 -> p2-4 -> p1-2 -> p2-1 -> p1-0
2. p1-5 -> p2-3 -> p1-2 -> p2-0

Exercise 2.3: Given the following edge weights for a game
Nim(5), find how the trained players would play. Give the path they
will follow.
Remember the start state is p1-5:

p1-5 -> p2-3 -> p1-2 -> p2-0

AFTER YOU’RE DONE WITH LAB CODING:
Exercise 2.4: Would you prefer to go first or second in Nim(10)?

I would prefer to be the first player and take one token to
end up in state p2-9.

In the programming part of this lab, you will:
● Using a graph as a state space
● Reinforcement learning
● How to teach a computer how to learn to win the game of Ni
● Implement next functions:

○ NimLearner constructor - which creates the vertices
and edges for the state space of a game of Nim;

○ playRandomGame - which returns a random path
through the graph of the state space as a vector<Edge>.

○ updateEdgeWeights - which updates the edge weights
along a given path on the graph of the state space.

As your TA and CAs, we’re here to help with your
programming for the rest of this lab section! ☺

