

Lab_huffman : Hazardous Huffman

Welcome to Lab Huffman!

Overview
This week’s lab will introduce a new application of binary trees:
Huffman encoding. The worksheet will include exercises about
Huffman encoding.

Before attempting this part of the worksheet, please read the
introduction to Huffman Encoding provided on lab_huffman’s
webpage. You can alternatively watch the video for this lab; a link to a
YouTube video is provided in this lab’s webpage. Both the video and
the webpage go over the same example of how to construct a Huffman
tree.

Encoding and Decoding
Now that we know how to construct a Huffman tree from a given text,
let’s practice how to use the Huffman tree to encode and decode
messages. Suppose we are given the following Huffman tree to use:

Exercise 1.1: Using the tree given above, what would be the Huffman
encoding of the word “heroes” ?

 H E R O E S
1101 | 1100 | 1001 | 01 | 1100 | 000

Exercise 1.2: What does the following string of bits say? Use the Huffman
tree above to decode it:

1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1

GO GO GOPHERS!

Save Huffman Tree to File
Suppose you and your friend in UIC want to use Huffman encoding to
pass compressed messages to each other. But before you can start, you
need to send your friend the Huffman tree you created so that they’ll
be able to encode and decode messages. You would like to save your
tree in a file as a string of characters, and send that file to your friend.

Exercise 2.1: The following pseudocode recursively translates a binary
tree into a sequence of characters and writes it to a text file; this
algorithm uses 1 as a flag to signal a leaf node, and 0 as a flag to signal
an internal node. Do not confuse these 0’s and 1’s with the edge
labels in a Huffman tree!
How will the example tree in Exercise 1 be saved in a file? What would
the output file look like?

1) Start at the root
2) If the current node is a leaf:

a) Write a “1” to the output file
b) Write the character that the leaf node represents to the

output file
3) Else (the current node is an internal nod):

a) Write a “0” to the output file
b) Recurse on the left subtree, then the right subtree

output.txt
1
2
3
4

0 0 0 1 S 1 ! 1 O 0 0 0 1 P 1 R 1 G 0 0 1 E 1 H 1 ␣

Exercise 2.2: Suppose your friend sent you the following file, can you
construct the original binary tree that it represents?

treeFile.txt
1
2

0 1 A 0 1 B 0 1 C 1 D

// Draw the original tree here:

Exercise 2.3: Using the pseudocode from 2.1, write a function that
prints the translated Tree.

huff_tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

#pragma once
class Tree{
 public:

struct Node {
char value;
Node* left;
Node* right;
Node(char value = 0, Node left = NULL,
Node right = NULL):
value(value),left(left),right(right){}

};
Node* root;

 void translate(const Node* subRoot) const;
};

huff_tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

#include “huff_tree.h”
void Tree::translate(const Node* subRoot) const {

 if (subRoot == NULL)
 {
 return;
 }
 if(subRoot->left == NULL && subRoot->right == NULL)
 {
 cout << "1" << subRoot->value;
 return;
 }
 cout << "0";
 translate(subRoot->left);
 translate(subRoot->right);

}

In the programming part of this lab, you will:

● Complete the implementation of the HuffmanTree class:
● Implement the buildTree() function
● Implement the writeTree() and readTree() functions for

writing and reading a binary tree from a file.
● Have fun encoding and decoding!

As your TA and CAs, we’re here to help with your
programming for the rest of this lab section!

☺

