Data Structures and Algorithms Cardinality Sketches

CS 225
November 6, 2023
Brad Solomon

Department of Computer Science

Learning Objectives

Finish discussing bloom filters (and review bit vectors)

Introduce the concept of cardinality and cardinality estimation

Demonstrate the relationship between cardinality and similarity

Introduce the MinHash Sketch for set similarity detection

Bloom Filters

A probabilistic data structure storing a set of values
Has three key properties:
k, number of hash functions
n, expected number of insertions
m, filter size in bits
Expected false positive rate: $\left(1-\left(1-\frac{1}{m}\right)^{n k}\right)^{k} \approx\left(1-e^{\frac{-n k}{m}}\right)^{k}$
Optimal accuracy when: $\quad k^{*}=\ln 2 \cdot \frac{m}{n}$

Bitwise Operators in C++

How can we encode a bit vector in C++?

Bitwise Operators in C++

Traditionally, bit vectors are read from RIGHT to LEFT
Warning: Lab_Bloom won't do this but MP_Sketching will!

0	0	0	0	1	1	1
1	0	0	1	0	1	0

Bitwise Operators in C++

Let $\mathbf{A}=\mathbf{1 0 1 1 0} \quad$ Let $\mathbf{B}=\mathbf{0 1 1 1 0}$
$\sim B:$
A \& B:

A $\mid B$:

A >> 2:

B << 2:

Bit Vectors: Unioning

Bit Vectors can be trivially merged using bit-wise union.

0	1		0	0		0
1	0		1	1		1
2	1		2	1		2
3	1		3	0		3
4	0	U	4	0	$=$	4
5	0		5	0		5
6	1		6	1		6
7	0		7	1		7
8	0		8	1		8
9	1		9	1		9

Bit Vectors: Intersection

Bit Vectors can be trivially merged using bit-wise intersection.

0	1	0	0		0
1	0	1	1		1
2	1	2	1		2
3	1	3	0		3
4	0	4	0	$=$	4
5	0	5	0		5
6	1	6	1		6
7	0	7	1		7
8	0	8	1		8
9	1	9	1		9

Bit Vector Merging

What is the conceptual meaning behind union and intersection?

Sequence Bloom Trees

Imagine we have a large collection of text...

And our goal is to search these files for a query of interest...

Sequence Bloom Trees

Sequence Bloom Trees

Sequence Bloom Trees

Bloom Filters: Tip of the Iceberg

Cohen, Saar, and Yossi Matias. "Spectral bloom filters." Proceedings of the 2003 ACM SIGMOD international conference on Management of data. 2003.

Fan, Bin, et al. "Cuckoo filter: Practically better than bloom." Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies. 2014.

Nayak, Sabuzima, and Ripon Patgiri. "countBF: A General-purpose High Accuracy and Space Efficient Counting Bloom Filter." 2021 17th International Conference on Network and Service Management (CNSM). IEEE, 2021.

Mitzenmacher, Michael. "Compressed bloom filters." IEEE/ACM transactions on networking 10.5 (2002): 604-612.

Crainiceanu, Adina, and Daniel Lemire. "Bloofi: Multidimensional bloom filters." Information Systems 54 (2015): 311-324.

Chazelle, Bernard, et al. "The bloomier filter: an efficient data structure for static support lookup tables." Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms. 2004.

There are many more than shown here...

The hidden problem with (most) sketches...

Cardinality

Cardinality is a measure of how many unique items are in a set

2
4
9
3
7
9
7
8
5
6

Cardinality

Sometimes its not possible or realistic to count all objects!

Estimate: 60 billion - 130 trillion

Image: https://doi.org/10.1038/nature03597

5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960
42
6901
4336
9228
3317
399
6925
2660
2314

Cardinality Estimation

Imagine I fill a hat with numbered cards and draw one card out at random.
If I told you the value of the card was 95 , what have we learned?

Cardinality Estimation

Imagine I fill a hat with a random subset of numbered cards from 0 to 999
If I told you that the minimum value was 95 , what have we learned?

Cardinality Estimation

Imagine we have multiple uniform random sets with different minima.

Cardinality Estimation

Let $\min =95$. Can we estimate N, the cardinality of the set?

Cardinality Estimation

Let $\min =95$. Can we estimate N, the cardinality of the set?

95
Conceptually: If we scatter N points randomly across the interval, we end up with $N+1$ partitions, each about $1000 /(N+1)$ long

Assuming our first'partition' is about average: $\quad 95 \approx 1000 /(N+1)$

$$
\begin{gathered}
N+1 \approx 10.5 \\
N \approx 9.5
\end{gathered}
$$

Cardinality Estimation

Why do we care about "the hat problem"?

Cardinality Estimation

Why do we care about "the hat problem"?

m possible minima

Cardinality Estimation

Now imagine we have a SUHA hash h over a range m.

Here a hash insert is equivalent to adding a card to our hat!

Now storing only the minimum hash value is a sketch!

Cardinality Sketch

Let $M=\min \left(X_{1}, X_{2}, \ldots, X_{N}\right)$ where each $X_{i} \in[0,1]$ is an uniform independent random variable

Claim: $\mathbf{E}[M]=\frac{1}{N+1}$

Cardinality Sketch

$\mathbf{E}[M]$ defines the range from 0 to the min value $\left(M=\min _{1 \leq i \leq N} X_{i}\right)$

Consider an $N+1$ draw: $\left.\quad$| X_{1} | X_{2} | X_{3} |
| :--- | :--- | :--- | :--- |$X_{X_{N}} \right\rvert\, X_{N+1}$

Cardinality Sketch

Consider an $N+1$ draw: | X_{1} | X_{2} | X_{3} | \cdots | X_{N} |
| :--- | :--- | :--- | :--- | :--- |
| | X_{N+1} | | | |$\quad M=\min _{1 \leq i \leq N} X_{i}$

Define an indicator:

$$
I_{i}= \begin{cases}1 & \text { if } X_{i}<\min _{j \neq i} X_{j} \\ 0 & \text { otherwise }\end{cases}
$$

$\mathbf{E}\left[I_{i}\right]=$

Cardinality Sketch

Claim: $\mathbf{E}[M]=\mathbf{E}\left[I_{N+1}\right]$

I_{1}	I_{N},	I_{N+1}
X_{1}		
	X_{N}	X_{N+1}

By definition, $\mathbf{E}\left[I_{N+1}\right]=\operatorname{Pr}\left(X_{N+1}<M\right)=\frac{1}{N+1}$

Cardinality Sketch

Claim: $\mathbf{E}[M]=\frac{1}{N+1} \quad N \approx \frac{1}{M}-1$

Attempt 1

0.962	0.328	0.771	0.952	0.923

Attempt 2

0.253	0.839	0.327	0.655	0.491

Attempt 3

$$
\begin{array}{|l|l|l|l|l|}
\hline 0.134 & 0.580 & 0.364 & 0.743 & 0.931 \\
\hline
\end{array}
$$

Cardinality Sketch

The minimum hash is a valid sketch of a dataset but can we do better?

Cardinality Sketch

Claim: Taking the $k^{\text {th }}$-smallest hash value is a better sketch!
Claim: $\mathbf{E}\left[M_{k}\right]=\frac{k}{N+1}$

$$
\begin{array}{llllll}
0 & M_{1} & M_{2} & M_{3} & \ldots & M_{k}
\end{array}
$$

Cardinality Sketch

Claim: Taking the $k^{\text {th }}$-smallest hash value is a better sketch!
Claim: $\frac{\mathbf{E}\left[M_{k}\right]}{k}=\frac{1}{N+1}$

$$
=\left[\mathbf{E}\left[M_{1}\right]+\left(\mathbf{E}\left[M_{2}\right]-\mathbf{E}\left[M_{1}\right]\right)+\ldots+\left(\mathbf{E}\left[M_{k}\right]-\mathbf{E}\left[M_{k-1}\right]\right)\right] \cdot \frac{1}{k}
$$

Cardinality Sketch

$$
\begin{aligned}
& \frac{1}{N+1}=\frac{\mathbf{E}\left[M_{k}\right]}{k} \\
&=\left[E^{\left[E\left[M_{1}\right]\right.}+\left(\mathbf{E}\left[M_{2}\right]-\mathbf{E}\left[M_{1}\right]\right)\right. \\
& \\
& \begin{array}{l}
k^{\text {th }} \text { minimum } \\
\\
\\
\text { value (KMV) }
\end{array} \quad \text { Averages } k \text { estimates for } \frac{1}{N+1}
\end{aligned}
$$

Cardinality Sketch

True cardinality $=1,000$
Trial

Cardinality Sketch

Given any dataset and a SUHA hash function, we can estimate the number of unique items by tracking the \mathbf{k}-th minimum hash value.

To use the k-th min, we have to track k minima. Can we use ALL minima?

Applied Cardinalities

Cardinalities
|A|
$|B|$
$|A \cup B|$
$|A \cap B|$

Set similarities

$$
O=\frac{|A \cap B|}{\min (|A|,|B|)}
$$

$$
J=\frac{|A \cap B|}{|A \cup B|}
$$

Real-world Meaning
AGGCCACAGTGTATTATGACTG ||||l|||l| ||||||l| AGGCCACAGTGAGTTATGACTG

AAAAAAAAAAAGATGT-AAGTA ||||||||||||||| |||| AAAAAAAAAAAGATGTAAAGTA

GAGG--TCAGATTCACAGCCAC |l|| |||||||||||||| GAGGGGTCAGATTCACAGCCAC

Set Similarity Review

How can we describe how similar two sets are?

Set Similarity Review

How can we describe how similar two sets are?

Set Similarity Review

To measure similarity of $A \& B$, we need both a measure of how similar the sets are but also the total size of both sets.

$$
J=\frac{|A \cap B|}{|A \cup B|}
$$

J is the Jaccard coefficient

Set Similarity Review

Similarity Sketches

But what do we do when we only have a sketch?

Similarity Sketches

Imagine we have two datasets represented by their k th minimum values

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. Mash Screen: high-throughput sequence containment estimation for genome discovery. Genome Biol 20, 232 (2019)

Similarity Sketches

Claim: Under SUHA, set similarity can be estimated by sketch similarity!

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. Mash Screen: high-throughput sequence containment estimation for genome discovery. Genome Biol 20, 232 (2019)

Minhash Sketch

An approximation for a full dataset capable of estimating set similarity

Minhash Sketch 'ADT' (Use Cases)

Constructor

Cardinality Estimation

Set Similarity Estimation

MinHash Construction

A MinHash sketch has three required inputs:
1.
2.
3.

MinHash Construction
$S=\{16,8,4,13,29,11,22\}$
$h(x)=x \% 7$
$k=3$

