
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon

November 3, 2023

Bloom Filters 2

Extra Credit Project Submissions
~110 teams submitted extra credit projects.

Drafted TAs to do a first pass grading of some of the major topics

Each TA-graded project is graded by two TAs for fairness

Mentors will (hopefully) be assigned sometime next week

Quick announcements on MPs
MP_Traversal had the lowest plagiarism rate of any assignment!

MP_mazes is due next week

The next MP will NOT be released next Monday

Quick announcements on Exams
Next exam is next Monday

Look at topic list / do practice exam

Make sure you thoroughly understand the coding question.

Learning Objectives

Review probabilistic data structures and explore one-sided error

Formalize the math behind the bloom filter

Discuss bit vector operations and potential extensions to bloom filters

Review conceptual understanding of bloom filter

Memory-Constrained Data Structures
What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

Google Index Estimate: >60 billion webpages

Google Universe Estimate (2013): >130 trillion webpages

Constrained by Big Data (Large)N

Bloom Filter: Insertion
An item is inserted into a bloom filter by hashing
and then setting the hash-valued bit to 1

If the bit was already one, it stays 1

0
0
1
0
0
1
0
1
0
0

H(x1)

H(x2)

H(x3)
H(x4)

Bloom Filter: Deletion

Due to hash collisions and lack of information,
items cannot be deleted! 0

0
0
0
0
1
0
0
0
0

H(x2)

H(x3)

H(x1)

H(x4)

Bloom Filter: Search

0 0
1 1
2 1
3 0
4 1
5 0
6 1

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k) = k % 7

_find(16)

_find(20)

_find(3)

Bloom Filter: Search

The bloom filter is a probabilistic data structure!
H(α)

If the value in the BF is 0:

If the value in the BF is 1:

0
0
1
0
0
1
0
1
0
0

H(x1)

H(x2)

H(x3)
H(x4)

H(β)

H(δ)

Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

“Not malicious”

“Malicious”

Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

True Positive:

False Positive:

False Negative:

True Negative:

Item Inserted

Bit Value = 1

Item NOT inserted

Bit Value = 0

0
1
0
0
1

‘Yes’
H(z)

0
0
0
0
1

‘No’

True Positive

0
1
0
0
1

‘Yes’

False Positive

H(z) 0
0
0
0
1

‘No’

False Negative

True Negative

Imagine we have a bloom filter that stores malicious sites…

Probabilistic Accuracy: One-sided error

We will NEVER have a False Negative: ≠
We will get some False Positives: =

search with one-
sided error

Query:

Dataset:

search with one-
sided error

Query:

Dataset:

Query:

search with one-
sided error

…

Probabilistic Accuracy: One-sided error

0

1
0

1
0

0

0

1
0

1
1
0

1
0

1
1
0

1
0

1

h1

Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

h1

Use many hashes/filters; add each item to each filter

0

0

0

1
0

0

0

1
0

1
0

0

1
1
1
0

0

1
0

0

h2

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

h1

Use many hashes/filters; add each item to each filter

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

h3h2

0

1
1
1
0

0

1
1
0

1
1
0

1
0

1
1
0

1
0

1

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

h1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

h2

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

h3

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

hk...

Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

... h{1,2,3,...,k}(y)

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1
1

0

1

0

1

0

0

0

1

0

0

0

1
0

1

0

0

1

1

1

0

0

1

0

0

0

1

1
1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1

1

0
0

0

1

0

1

0

0

1

1

1

1

1

1

... h{1,2,3,...,k}(y)

If any query yields 0,
item is not in the set

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1
0

1

1

0

1

0

1

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1
0

0

0

1
1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1
1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

... h{1,2,3,...,k}(z)

If all queries yield 1, item
may be in the set; or we
might have collided k times

Bloom Filter: Repeated Trials

Using repeated trials, even a very bad filter can still have a very low FPR!

Bloom Filter: Repeated Trials

If we have bloom filter, each with a FPR , what is the likelihood that all
filters return the value ‘1’ for an item we didn’t insert?

k p

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

h1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

h2

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

h3

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

hk...

But doesn’t this hurt our storage costs by storing separate filters?k

Bloom Filter: Repeated Trials

Bloom Filter: Repeated Trials

0
1
2
3
4
5
6
7
8
9

h1(x) = x % 10 h2(x) = 2x % 10 h3(x) = (5+3x) % 10
S = { 6, 8, 4 }

Rather than use a new filter for each hash, one filter can use hashesk

Bloom Filter: Repeated Trials

0 0
1 0
2 1
3 1
4 1
5 0
6 1
7 1
8 1
9 1

h1(x) = x % 10 h2(x) = 2x % 10 h3(x) = (5+3x) % 10

_find(1)

_find(16)

Rather than use a new filter for each hash, one filter can use hashesk

Bloom Filter

0
0
1
0
0
1
0
1
0
0

A probabilistic data structure storing a set of values

Built from a bit vector of length and hash functionsm k

Insert / Find runs in: _______________

Delete is not possible (yet)!

H = {h1, h2, . . . , hk}

Bloom Filter: Error Rate
Given bit vector of size and SUHA hash functionm k

h{1,2,3,...,k}

m

What is our expected FPR after objects are inserted?n

Bloom Filter: Error Rate
Given bit vector of size and 1 SUHA hash functionm

h{1,2,3,...,k}

m

What's the probability a specific bucket is 1 after
one object is inserted?

Same probability given SUHA hash function?k

Bloom Filter: Error Rate
Given bit vector of size and SUHA hash functionm k

h{1,2,3,...,k}

m

Probability a specific bucket is 0 after one object is inserted?

After objects are inserted?n

Bloom Filter: Error Rate
Given bit vector of size and SUHA hash functionm k

h{1,2,3,...,k}

m

What's the probability a specific bucket is 1 after
 objects are inserted?n

Bloom Filter: Error Rate
Given bit vector of size and SUHA hash functionm k

h{1,2,3,...,k}

m

What is our expected FPR after objects are inserted?n

The probability my bit is 1 after objects insertedn

(1 − (1 −
1
m)

nk

)
k

The number of [assumed independent] trials

Bloom Filter: Error Rate
Vector of size , SUHA hash function, and objectsm k n

h{1,2,3,...,k}

m

To minimize the FPR, do we prefer…

(1 − (1 −
1
m)

nk

)
k

 (A) large k (B) small k

Bloom Filter: Error Rate
Vector of size , SUHA hash function, and objectsm k n

(1−(1 −
1
m)

nk

)
k

 (A) large k (B) small k

As increases, this gets smaller! k

(1 − (1 −
1
m)

nk

)
k

As decreases, this gets smaller! k

Bloom Filter: Optimal Error Rate

Claim: The optimal hash function is when k * = ln 2 ⋅
m
n

(1 − (1 −
1
m)

nk

)
k

≈ (1 − e
−nk
m)

k

d
dk (1 − e

−nk
m)

k
≈

d
dk (k ln(1 − e

−nk
m))

(1)

(2)

To build the optimal hash function, fix m and n!

Bloom Filter: Optimal Error Rate

Claim 1:

(1 −
1
m)

nk

= e
ln[(1 − 1

m)
nk]

= e
ln[(1 − 1

m)]nk

≈ e
−nk
m

(1 − (1 −
1
m)

nk

)
k

≈ (1 − e
−nk
m)

k

Bloom Filter: Optimal Error Rate

Claim 2:

d
dx

ln f(x) =
1

f(x)
df(x)
dx

d
dk (1 − e

−nk
m)

k
≈

d
dk (k ln(1 − e

−nk
m))

Fact:

TL;DR: min [f(x)] = min [ln f(x)]

Derivative is zero when k* = ln 2 ⋅
m
n

h

Tradeoff for M/N=10

FPR

k

m /n = 10

(1 − e
−nk
m)

k

k* = ln 2 ⋅ 10 = 6.93

Bloom Filter: Error Rate

Figure by Ben Langmead

Bloom Filter: Optimal Parameters

 itemsn = 100 hashesk = 3 m =

k* = ln 2 ⋅
m
n

Given any two values, we can optimize the third

 bitsm = 100 itemsn = 20 k =

 bitsm = 100 itemsk = 2 n =

Bloom Filter: Optimal Parameters

m =
nk
ln 2

≈ 1.44 ⋅ nk Optimal hash function is still O(m)!

n = 60 billion — 130 trillion

n = 250,000 files vs ~1015 nucleotides vs 260 TB

Bloom Filter: Website Caching

Maggs, Bruce M., and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer Communication Review 45.3 (2015): 52-66.

0
1
0
1
0
1

Loaded this before?

Cache this page!

Add to filter (but don’t cache!)

Bitwise Operators in C++
Traditionally, bit vectors are read from RIGHT to LEFT

Warning: Vector<bool> doesn’t do this but actual bits do!

0 0 0 0 1 1 1

1 0 0 1 0 1 0

Bitwise Operators in C++
Let A = 10110 Let B = 01110

A & B:

A | B:

A >> 2:

B << 2:

~B:

Bit Vectors: Unioning

0 1
1 0
2 1
3 1
4 0
5 0
6 1
7 0
8 0
9 1

0 0
1 1
2 1
3 0
4 0
5 0
6 1
7 1
8 1
9 1

Bit Vectors can be trivially merged using bit-wise union.

0
1
2
3
4
5
6
7
8
9

U =

Bit Vectors: Intersection

0 1
1 0
2 1
3 1
4 0
5 0
6 1
7 0
8 0
9 1

0 0
1 1
2 1
3 0
4 0
5 0
6 1
7 1
8 1
9 1

Bit Vectors can be trivially merged using bit-wise intersection.

0
1
2
3
4
5
6
7
8
9

U =

Bit Vector Merging
What is the conceptual meaning behind union and intersection?

Sequence Bloom Trees

ATGGTTAGAATTAAACCCGG
TGCTAATAAACCUAGTGATG

CGATAGCACAGGTAGATCC
TACGTAGAGGTCATTAGCC

….

TACGTAGAGGTCATTAGCCG
TGCTAATAAACCUAGTGATG

Imagine we have a large collection of text…

And our goal is to search these files
for a query of interest…

Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Sequence Bloom Trees

Sequence Bloom Trees

Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Are ≥ θ fraction of query
kmers ∈ this Bloom filter?

If YES, move to children

If NO, stop looking
at this subtree

(Global mismatch)

X X X X XXX

Sequence Bloom Trees

SRA FASTA.gz SBT
Leaves 4966 GB 2692 GB 63 GB
Full Tree - - 200 GB

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read
sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.

Solomon, Brad, and Carl Kingsford. "Improved search of large transcriptomic
sequencing databases using split sequence bloom trees." International
Conference on Research in Computational Molecular Biology. Springer, Cham,
2017.

Sun, Chen, et al. "Allsome sequence bloom trees." International Conference
on Research in Computational Molecular Biology. Springer, Cham, 2017.

Harris, Robert S., and Paul Medvedev. "Improved representation of sequence
bloom trees." Bioinformatics 36.3 (2020): 721-727.

SR
A-

BL
AS
T

Bloom Filters: Tip of the Iceberg

Cohen, Saar, and Yossi Matias. "Spectral bloom filters." Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. 2003.

Fan, Bin, et al. "Cuckoo filter: Practically better than bloom." Proceedings of the 10th ACM International
on Conference on emerging Networking Experiments and Technologies. 2014.

Nayak, Sabuzima, and Ripon Patgiri. "countBF: A General-purpose High Accuracy and Space Efficient
Counting Bloom Filter." 2021 17th International Conference on Network and Service Management
(CNSM). IEEE, 2021.

Mitzenmacher, Michael. "Compressed bloom filters." IEEE/ACM transactions on networking 10.5 (2002): 604-612.

Crainiceanu, Adina, and Daniel Lemire. "Bloofi: Multidimensional bloom filters." Information Systems 54 (2015): 311-324.

There are many more than shown here…

Chazelle, Bernard, et al. "The bloomier filter: an efficient data structure for static support lookup tables." Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms. 2004.

