Data Structures and Algorithms

Bloom Filters 2

CS 225
November 3, 2023
Brad Solomon

Department of Computer Science

Extra Credit Project Submissions

~110 teams submitted extra credit projects.

Drafted TAs to do a first pass grading of some of the major topics

Each TA-graded project is graded by two TAs for fairness

Mentors will (hopefully) be assigned sometime next week

Quick announcements on MPs

MP_Traversal had the lowest plagiarism rate of any assignment!

MP_mazes is due next week

The next MP will NOT be released next Monday
\rightarrow next noot mallay?

Quick announcements on Exams

Next exam is next Monday

Look at topic list / do practice exam

Make sure you thoroughly understand the coding question.

Learning Objectives

Review conceptual understanding of bloom filter

Review probabilistic data structures and explore one-sided error

Formalize the math behind the bloom filter

Discuss bit vector operations and potential extensions to bloom filters

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects in a memory-constrained environment?

Constrained by Big Data (Large N)

cat photos						¢ 0	
Q All	[Images	国 News	\square Videos	\square Books	: More	Settings	Tools

About 4,850,000,000 results (0.49 seconds)
Images for cat

Google Index Estimate: >60 billion webpages

Bloom Filter: Insertion
An item is inserted into a bloom filter by hashing and then setting the hash-valued bit to 1

If the bit was already one, it stays 1

$$
H(x)\left(\begin{array}{cc}
\text { ane } & 01 \\
\text { no le }
\end{array}\right)
$$

$$
L \text { No collision manasimnnt! }
$$

Data Paint: x_{1}

$$
\left.\begin{array}{l}
\text { ala point: } x_{1} \\
\text { Hash } x_{1}: H\left(x_{1}\right)=2(\text { hash value } \\
\text { index }
\end{array}\right)
$$

$$
\begin{aligned}
& H\left(x_{1}\right)=2\binom{\text { hash val }}{\text { index }} \\
& \Leftrightarrow \text { set bit at index } H\left(x_{1}\right) \text { to } 1 H\left(x_{4}\right) \\
& \text { sion mantsman. } \\
& \hookrightarrow \text { Set bit at index } H\left(x_{1}\right) \text { to } 1 H\left(x_{4}\right) \quad 0
\end{aligned}
$$

Bloom Filter: Deletion

Due to hash collisions and lack of information, items cannot be deleted!

Bloom Filter: Search

$$
\begin{aligned}
& S=\{16,8,4,13,29,11,22\} \quad \text { find (16) } \\
& h(k)=k \% 7 \\
& \operatorname{sh}(16)=2 \\
& \text { Bit is one so yes! } \\
& 0 \quad 0 \\
& \text { _find(20) } 6 \\
& \text { Yh(20) This is } \\
& \text { b res!' a Ease positive } \\
& \text { _find (3) } \\
& 4 h(3) \\
& G N_{0}
\end{aligned}
$$

Bloom Filter: Search
Thrown out information
The bloom filter is a probabilistic data structure!

If the value in the $B F$ is 0 :
$\leftrightarrows 100$ io of the time, item is not present
LT No false negatives
If the value in the $B F$ is 1 :
\rightarrow The object misht be present litho, I insert

Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

Probabilistic Accuracy: Malicious Websites
Imagine we have a detection oracle that identifies if a site is malicious
True Positive: Oracle says Malitions / Predictor says malicious

False Positive: Orude says safe / Predictor says Malicious

False Negative: A (thus)

True Negative:
Mal:cias) Predict safe

Safe $/$ predict safe

Imagine we have a bloom filter that stores malicious sites...
pepd!ck

Probabilistic Accuracy: One-sided error

Probabilistic Accuracy: One-sided error

Bloom Filter: Repeated Trials
Talking absence

Use many hashes/filters; add each item to each filter
Does it exist

Dos 2 exist?

Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials

0	0	0		0
1	0	1		1
0	0	1		1
1	1	1		1
0	0	0		1
0	0	0		1
0	0	1		0
1	1	1		0
0	0	0		0
1	1	1		1
1	0	1		0
0	0	0		1
1	1	1		0
0	1	0		0
1	1	1		1
1	0	1		1
0	0	0		1
1	1	1		1
0	0	0		1
1	0	1		1

$$
h_{\{1,2,3, \ldots, k\}}(y)
$$

Bloom Filter: Repeated Trials

Bloom Filter: Repeated Trials

Bloom Filter: Repeated Trials
A sue knic as BF FPR
Using repeated trials, even a very bad filter can still have a very low FPR!
If we have k bloom filter, each with a FPR p, what is the likelihood that all filters return the value ' 1 ' for an item we didn't insert?

$$
\begin{array}{ll}
F P R=\frac{1}{2} & k=10 \\
\left(\frac{1}{2}\right)^{k} & \left(\frac{1}{2}\right)^{10}=0.000976
\end{array}
$$

Power of repeated trials $\&>$ One -sided error

Bloom Filter: Repeated Trials

But doesn't this hurt our storage costs by storing k separate filters? BF

Bloom Filter: Repeated Trials
Rather than use a new filter for each hash, one filter can use k hashes

Bloom Filter: Repeated Trials
Rather than use a new filter for each hash, one filter can use k hashes

Bloom Filter

Bloom Filter: Error Rate
Given bit vector of size m and k SUHA hash function

What is our expected FPR after n objects are inserted?

G 木P is when \pm pick k positions all 7 by chare
m

Bloom Filter: Error Rate
Given bit vector of size m and 1 SUHA hash function
What's the probability a specific bucket is 1 after one object is inserted?

$$
P(\text { buster }=1)=\frac{1}{m}
$$

Afar, 1 iso, \boldsymbol{f} prob chases form $1 / m m$ on next insert

Same probability given k SUHA hash function?

$$
\left(\frac{1}{m}\right)_{\substack{\text { approobhes }}}^{k} \ell \text { Not tap! this is hoed }
$$

Bloom Filter: Error Rate

$$
\operatorname{Pr}\left(\operatorname{Bu}_{\text {usk }}=1\right)=1-\operatorname{Pr}\left(\begin{array}{l}
\text { Bunter }=0) \\
h_{\{1,2,3, \ldots, k\}}
\end{array}\right.
$$

Given bit vector of size m and \mathbb{K} SUHA hash function

$$
\frac{1}{4}(\mathbb{R}, A)
$$

Probability a specific bucket is 0 after one object is inserted?

After n objects are inserted?

Bloom Filter: Error Rate K bututs bloc K carven trials $h_{\{1,2,3, \ldots, k\}}$
Given bit vector of size m and k SUHA hash function
What's the probability a specific bucket is 1 , after n objects are inserted?

$$
\left(1-\left(1-\frac{2}{2}\right)^{k+1}\right.
$$

Given bit vector of size m and k SUHA hash function FPR | tath is falce
What is our expected FPR after n objects are inserted?

$$
\binom{1}{4}=\begin{aligned}
& 1 \\
& 0 \\
& 0
\end{aligned}
$$

The probability my bit is 1 after n objects inserted

Bloom Filter: Error Rate

Vector of size m, k SUHA hash function, and n objects

To minimize the FPR, do we prefer...
(A) large k
(B) small k
Bosh right
and
wran!!

$$
\left(1-\left(1-\frac{1}{m}\right)^{n k}\right)^{k}
$$

Bloom Filter: Error Rate

$$
\frac{1}{2} \quad\left(\frac{1}{2}\right)^{10} \pi_{\text {man beth }}
$$

Vector of size m, k SUHA hash function, and n objects

$$
\begin{gathered}
\text { (A) large } k \\
\left(1-\left(1-\frac{1}{m}\right)^{n k}\right)^{k}
\end{gathered}
$$

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
!
\end{array}\right]
$$

(B) small k

$$
\left(1-\left(1-\frac{1}{m}\right)^{n k}\right)^{k}
$$

As k increases, this gets smaller!
As k decreases, this gets smaller!

$$
P=\begin{aligned}
& \text { froctia of b,14s in } B F \\
& \text { luger }
\end{aligned}
$$

\leftrightarrows Wart random tries
Too many hashes linsorts of fill, saturates

Bloom Filter: Optimal Error Rate

To build the optimal hash function, fix \mathbf{m} and \mathbf{n} !
Claim: The optimal hash function is when $k^{*}=\ln 2 \cdot \frac{m}{n}$
(1) $\left(1-\left(1-\frac{1}{m}\right)^{n k}\right)^{k} \approx\left(1-e^{\frac{-n k}{m}}\right)^{k}$
(2) $\frac{d}{d k}\left(1-e^{\frac{-n k}{m}}\right)^{k} \approx \frac{d}{d k}\left(k \ln \left(1-e^{\frac{-n k}{m}}\right)\right)$

Bloom Filter: Optimal Error Rate

Claim 1: $\left(1-\left(1-\frac{1}{m}\right)^{n k}\right)^{k} \approx\left(1-e^{\frac{-n k}{m}}\right)^{k}$

$$
\begin{aligned}
\left(1-\frac{1}{m}\right)^{n k} & =e^{\ln \left[\left(1-\frac{1}{m}\right)^{m k}\right]} \\
& =e^{\ln \left[\left(1-\frac{1}{m}\right)\right] n k}
\end{aligned}
$$

$$
\approx e^{\frac{-n k}{m}}
$$

Bloom Filter: Optimal Error Rate

Claim 2: $\frac{d}{d k}\left(1-e^{\frac{-n k}{m}}\right)^{k} \approx \frac{d}{d k}\left(k \ln \left(1-e^{\frac{-n k}{m}}\right)\right)$
Fact: $\frac{d}{d x} \ln f(x)=\frac{1}{f(x)} \frac{d f(x)}{d x}$

TL;DR: $\min [f(x)]=\min [\ln f(x)]$

Derivative is zero when $k^{*}=\ln 2 \cdot \frac{m}{n}$

Bloom Filter: Error Rate

$$
m / n=10
$$

Bloom Filter: Optimal Parameters \rightarrow Cob, Blom

$k^{*}=\ln 2 \cdot \frac{m}{n}$

Given any two values, we can optimize the third
$n=100$ items $\quad k=3$ hashes
$m=$
$m=100$ bits $\quad n=20$ items $\quad k=$
$m=100$ bits $\quad k=2$ items
$n=$

Bloom Filter: Optimal Parameters

$$
m=\frac{n k}{\ln 2} \approx 1.44 \cdot n k
$$

Optimal hash function is still $\mathbf{O (m) !}$

$\mathbf{n}=\mathbf{2 5 0}, 000$ files vs $\boldsymbol{\sim} \mathbf{1 0}^{15}$ nucleotides vs $\mathbf{2 6 0}$ TB

Bloom Filter: Website Caching

Bitwise Operators in C++

Traditionally, bit vectors are read from RIGHT to LEFT
Warning: Vector<bool> doesn't do this but actual bits do!

0	0	0	0	1	1	1
1	0	0	1	0	1	0

Bitwise Operators in C++

Let $\mathbf{A}=\mathbf{1 0 1 1 0} \quad$ Let $\mathbf{B}=\mathbf{0 1 1 1 0}$
$\sim B:$
A \& B:

A $\mid B$:

A >> 2:

B << 2:

Bit Vectors: Unioning

Bit Vectors can be trivially merged using bit-wise union.

0	1		0	0		0
1	0		1	1		1
2	1		2	1		2
3	1		3	0		3
4	0	U	4	0	$=$	4
5	0		5	0		5
6	1		6	1		6
7	0		7	1		7
8	0		8	1		8
9	1		9	1		9

Bit Vectors: Intersection

Bit Vectors can be trivially merged using bit-wise intersection.

0	1	0	0		0
1	0	1	1		1
2	1	2	1		2
3	1	3	0		3
4	0	4	0	$=$	4
5	0	5	0		5
6	1	6	1		6
7	0	7	1		7
8	0	8	1		8
9	1	9	1		9

Bit Vector Merging

What is the conceptual meaning behind union and intersection?

Sequence Bloom Trees

Imagine we have a large collection of text...

And our goal is to search these files for a query of interest...

Sequence Bloom Trees

Sequence Bloom Trees

Sequence Bloom Trees

Bloom Filters: Tip of the Iceberg

Cohen, Saar, and Yossi Matias. "Spectral bloom filters." Proceedings of the 2003 ACM SIGMOD international conference on Management of data. 2003.

Fan, Bin, et al. "Cuckoo filter: Practically better than bloom." Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies. 2014.

Nayak, Sabuzima, and Ripon Patgiri. "countBF: A General-purpose High Accuracy and Space Efficient Counting Bloom Filter." 2021 17th International Conference on Network and Service Management (CNSM). IEEE, 2021.

Mitzenmacher, Michael. "Compressed bloom filters." IEEE/ACM transactions on networking 10.5 (2002): 604-612.

Crainiceanu, Adina, and Daniel Lemire. "Bloofi: Multidimensional bloom filters." Information Systems 54 (2015): 311-324.

Chazelle, Bernard, et al. "The bloomier filter: an efficient data structure for static support lookup tables." Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms. 2004.

There are many more than shown here...

