
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon

October 23, 2022

Probability in Computer Science

Learning Objectives

Review fundamentals of probability in computing

Distinguish the three main types of ‘random’ in computer science

Formalize the concept of randomized algorithms

Finish disjoint set analysis (one final proof)

Disjoint Sets w/ Path Compression
How do we observe how the efficiency of a set changes due to PC?

1

2

3

6

7

8

9

4

5

10

11

1

2

3

6 7

8

94

5

10

11

Amortized Time Review
We have n items. We make n insert() calls.

We are interested in the worst case work possible over n calls.

Amortized Time (Rank w/ Path Compression)
We have n items in an Uptree. We make m find() calls.

We are interested in the worst case work possible over m calls.

1

2

3

6

7

8

9

4

5

10

11

Key Properties of UpTree by rank w/ PC
The parent of a node is always higher rank than the node.

For any integer , there are at most nodes of rank .r
n
2r

r

The min(nodes) in a set with a root of rank has nodes.r ≥ 2r

Amortized Time (Rank w/ Path Compression)
Put every non-root node in a bucket by rank!

Structure buckets to store ranks [r, 2r − 1]

Ranks Bucket

0 0
1 1

2 - 3 2

4 - 15 3

16 – 65535 4

65536 – 2^{65536}-1 5

Iterated Logarithm Function ()𝑙𝑜𝑔∗𝑛
 is piecewise defined as

 if
otherwise

𝑙𝑜𝑔∗𝑛
0 𝑛 ≤ 1

1 + 𝑙𝑜𝑔∗(log𝑛)

Amortized Time (Rank w/ Path Compression)

Ranks Bucket

0 0
1 1

2 - 3 2

4 - 15 3

16 – 65535 4

65536 – 2^{65536}-1 5

Let be the size of the bucket with min rank . |Br | r

What is ?max(|Br |)

The work of find(x) are the steps taken on the path from a node x to the
root (or immediate child of the root) of the UpTree containing x

Amortized Time (Rank w/ Path Compression)

We can split this into two cases:

Case 1: We take a step from one bucket to another bucket.

Case 2: We take a step from one item to another inside the same bucket.

Amortized Time (Rank w/ Path Compression)
Case 2: We take a step from one item to another inside the same bucket.
Let’s call this the step from u to v.

u

v
vu

Every time we do this, we do path compression:
We set parent(u) a little closer to root

How many total times can I do this for each u in ?|Br |

How many nodes are in ?|Br |

Final Result

For n calls to makeSets() [n items] and m find() calls the total work is:

Randomized Algorithms
A randomized algorithm is one which uses a source of randomness
somewhere in its implementation.

0
1 ∅
2
3
4

Greg

Frank

BeVy
Anna

Francis
Peter

Figure from Ondov et al 2016

0
1
0
0
1

H(z)

0 2 1 0 0 4 0 2 0 6
1 0 2 3 1 0 3 4 0 1
2 1 0 2 0 1 0 0 7 2

H(x)
H(y)
H(z)

A faulty list
Imagine you have a list ADT implementation except…

Every time you called insert, it would fail 50% of the time.

Quick Primes with Fermat’s Primality Test
If is prime and is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if is composite and n an−1 ≡ 1 (mod n)

Fundamentals of Probability
Imagine you roll a pair of six-sided dice.

The sample space is the set of all possible outcomes.Ω

An event is any subset.E ⊆ Ω

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

E[X] = ∑
x∈Ω

Pr{X = x} ⋅ x

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables and ,X Y
E[X + Y] = E[X] + E[Y]

E[X + Y] = ∑
x

x ⋅ Pr{X = x} + ∑
y

y ⋅ Pr{Y = y}

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables and ,X Y
E[X + Y] = E[X] + E[Y]

E[X + Y] = ∑
x

∑
y

Pr{X = x, Y = y}(x + y)

E[X + Y] = ∑
x

x∑
y

Pr{X = x, Y = y} + ∑
y

y∑
x

Pr{X = x, Y = y}

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables and ,X Y
E[X + Y] = E[X] + E[Y]

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Claim: is S(n) O(n log n)
N=0: N=1:

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

31

2

31

23

1

2

2

1

3

1

3

2

2

3

1

N=3:

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Let be the number of nodes in the left subtree.0 ≤ i ≤ n − 1

Then for a fixed , i S(n) = (n − 1) + S(i) + S(n − i − 1)

Average-Case Analysis: BST

S(n) = (n − 1) +
1
n

n−1

∑
i=0

S(i) + S(n − i − 1)

Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Average-Case Analysis: BST

S(n) = (n − 1) +
2
n

n−1

∑
i=1

S(i)

S(n) ≤ (n − 1) +
2
n ∫

n

1
(cx ln x)dx

S(n) = (n − 1) +
2
n

n−1

∑
i=1

(ci ln i)

S(n) ≤ (n − 1) +
2
n (cn2

2
ln n −

cn2

4
+

c
4) ≈ cn ln n

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Since is , if we assume we are randomly choosing a
node to insert, find, or delete* then each operation takes:

S(n) O(n log n)

Average-Case Analysis: BST

Summary: All operations are on average O(log n)

Randomness:

Assumptions:

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

…

Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is for any input!O(n log n)
Let be the total comparisons and be an indicator variable:X Xij

Xij = {
1 if ith object compared to jth

0 if ith object not compared to jth

Then…

