Data Structures
 Disjoint Sets 3

October 20, 2023
Brad Solomon \& G Carl Evans

5 UNiversity in
Department of Computer Science

Learning Objectives
Discuss efficiency of disjoint sets 7

Introduce path compression and rank
Prove efficiency of disjoint sets (again)

Disjoint Sets

Key Ideas:

- Each element exists in exactly one set.
- Every item in each set has the same representation
- Each set has a different representation

Disjoint Sets Representation

We can represent a disjoint set as an array where the key is the index
The values inside the array stores our sets as a pseudo-tree (UpTree)
<Negative values denote representative elements (the root)
All other set members store the index to a parent of the UpTree

Disjoint Sets - Best and Worst UpTree

How do we lesion midas?

trust the O is not in sat

Disjoint Sets - Smart Union

Union by size

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8	-4	10	7	-8	7	7	4	5

Idea: Minimize the number of nodes that increase in height

Claim that both guarantee the height of the tree is: \qquad .

Disjoint Sets Union by Size

Disjoint Sets Union by Size

Claim: Sets unioned by size have a height of at most $\mathrm{O}\left(\log _{2} \mathrm{n}\right)$
Claim: An UpTree of height \mathbf{h} has nodes $\geq 2^{h}$

Base Case:

Base case height is 0 , has one node.

Disjoint Sets Union by Size $\left\{\begin{array}{lll}\text { tet } & A, & B \text { be two } \\ \text { Sols } & \text { to ins } & \text { mined }\end{array}\right.$
Claim: An UpTree of height \mathbf{h} has nodes $\geq 2^{h}$
$\mathrm{IH}:$ Claim is true for $<i$ unions, prove for i th union.
(We have done $i-1$ total unions and plan to do one more)

Case 1: $h(A)<h(B)$
Case 2: $h(A)==h(B)$
Case 3: $h(A)>h(B)$

Bise the A
$\mathrm{n}(\mathrm{B}) \geq \mathrm{n}(\mathrm{A})$
A

Disjoint Sets Union by Size
Claim: An UpTree of height \mathbf{h} has nodes $\geq 2^{h}$
IH: Claim is true for $<i$ unions, prove for i th union.
Case 1: height $(A)<\operatorname{height}(B)$
b I deal (sse. Boa
B 's Our coot

1) My height doresnt charge!

2) By FH, both A \& B are good disjoint sets

Disjoint Sets Union by Size

$$
n(B) \geq n(A)
$$

Claim: An UpTree of height \mathbf{h} has nodes $\geq 2^{h}$
IH: Claim is true for $<i$ unions, prove for i th union.
Case 2: $\operatorname{height}(\mathrm{A})==$ height (B)

1) M_{y} height $\left[h^{\prime}\left(B^{\prime}\right)=1+\right.$ height $\left.\left./ B\right)\right]$

By FH: $\cap\left(B^{\prime}\right)=n(B)+n(A)$

Disjoint Sets Union by Size
Claim: An UpTree of height \mathbf{h} has nodes $\geq 2^{h}$
IH: Claim is true for $<i$ unions, prove for i th union.
Case 3: height $(A)>$ height (B)
know $n(A) \geq 2^{h|A|}$
$n(B)$

$$
\begin{aligned}
& n(B)=\Lambda(A)+\Lambda(B) \geq \alpha_{n}(A) \\
& \partial \cdot 2^{h(A)} \\
& 2^{h(A)+1}
\end{aligned}
$$

$$
n\left(B^{\prime}\right) \geq 2^{h(A)+1}
$$

Disjoint Sets Union by Size
Proven: An UpTree of height \mathbf{h} has nodes $\geq 2^{h}$
$\mathbf{I H}:$ Claim is true for $<i$ unions, prove for i th union.
Each case we saw we have $n \geq 2^{h}$.

$$
h \approx o(\log n)
$$

An uptree uniand by size still has good height 7

Path Compression

No more woik then findle was dan!! firdil)
$O(h)$
Itkitively: I conly do work onie

Disjoint Sets - Union by Rank (not height!)

Union by Rank (Not Height) \rightarrow mot 'ucted by Path
The change: New UpTrees have rank $=0 \downarrow \nLeftarrow$
COMpressien

Let A, B be two sets being unioned. If:
$\operatorname{rank}(\mathbf{A})==\operatorname{rank}(\mathbf{B}):$ The merged UpTree has rank +1
$\operatorname{rank}(\mathbf{A})>\operatorname{rank}(\mathrm{B}):$ The merged UpTree has $\operatorname{rank}(\mathrm{A})$
$\operatorname{rank}(B)>\operatorname{rank}(A):$ The merged UpTree has $\operatorname{rank}(B)$
This is identical to height (with a different starting base)!

Union by Rank

Claim: An UpTree of rank \mathbf{r} has nodes $\geq 2^{r}$.

Base Case:

Inductive Step: IH holds for all UpTrees up to $k<r$

Exercise for
jeeves
\longrightarrow
Try solving yourself before seeing answer (next slide)!

Union by Rank - Proof

Much like before we will show that in a tree with a root of rank r there are nodes $(r) \geq 2^{r}$
Base Case: UpTree of rank $=0$ has 1 node $2^{0}=1$

Inductive Hypothesis: for all trees of ranks $k, k<r, \operatorname{nodes}(k) \geq 2^{k}$
A root of rank r is created by merging two trees of rank $r-1$
by IH each of those trees have nodes $(r-1) \geq 2^{r-1}$
so, tree a of rank r has $\operatorname{nodes}(r) \geq 2 \times 2^{r-1} \geq 2^{r}$

Taking the inverse, we get a height of $O(\log (n))$

Union by Rank w/ Path Compression
How does rank w/ path compression affect our runtime?

Union by Rank w/ Path Compression

1. Rank only changes for roots and can only increase (unlike height!)

Y(ancricel eloments
Th.'S is why uni ta is
2. For all non-root nodes $x, \operatorname{rank}(\mathbf{x})<\operatorname{rank}($ parent($\mathbf{x})$)
3. If parent (x) changes, then our new parent has larger rank.

Union by Rank w/ Path Compression

4. \min (nodes) in a set with a root of rank r has $\geq 2^{r}$ nodes.
cestarins y proof I skippod

$$
\Lambda \geq 2^{r}
$$

5. Since there are only n nodes the highest possible rank is $\lfloor\log n\rfloor$.

$$
h \sim O(\log n)
$$

Union by Rank w/ Path Compression
6. For any integer r, there are at most $\frac{n}{2^{r}}$ nodes of rank r.

Intuitively: The louvar my canto, the share nolo's stared below me,
The face botel nodes's can hove
Bose lase: $r=0 \rightarrow \cap$ nodes of rake O
for any $k, r=k$ only when we union
$(k-1) \times(k-1)$ conte r

832
A/2r is the max \# I can have of cont r

Amortized Time (Rank w/ Path Compression)
For \mathbf{n} calls to makeSets() [n items] and \mathbf{m} find() calls the max work is...
?! ament of vnicm
This gives us a more accurate picture since each find can make our search a faster!

Two cases of find(): $\lambda^{\text {conarieql }} e^{\text {element }}$

1. We search for root [or a node whose parent is root]

2. We search for a node where neither above apply.

\leftrightarrows proof comes in q Do this medoy

Amortized Time (Rank w/ Path Compression)
Put every non-root node in a bucket by rank!

Structure buckets to store ranks $\left[r, 2^{r}-1\right]$
Max work:

$$
\begin{aligned}
& \text { <er } \\
& \begin{array}{l}
\text { After } n \\
\text { steps } \\
\text { have explain } \\
\text { every } \\
\text { faith }
\end{array}
\end{aligned}
$$

Iterated Logarithm Function $\left(\log ^{*} n\right)$

$\log ^{*} n$ is piecewise defined as

$$
0 \text { if } n \leq 1
$$

otherwise

$$
1+\log ^{*}(\log n)
$$

Amortized Time (Rank w/ Path Compression)

Let $\left|B_{r}\right|$ be the size of the bucket with min rank r.

What is $\max \left(\left|B_{r}\right|\right)$?

Ranks	Bucket
0	0
1	1
$2-3$	2
$4-15$	3
$16-65535$	4
$65536-2^{\wedge}\{65536\}-1$	5

Amortized Time (Rank w/ Path Compression)

The work of find(\mathbf{x}) is the steps taken on the path from a node x to the root (or immediate child of the root) of the UpTree containing x

We can split this into two cases:
Case 1: We take a step from one bucket to another bucket.

Case 2: We take a step from one item to another inside the same bucket.

Amortized Time (Rank w/ Path Compression)

Case 2: We take a step from one item to another inside the same bucket.
Let's call this the step from \mathbf{u} to \mathbf{v}.
Every time we do this, we do path compression:
We set parent(u) a little closer to root

How many total times can I do this for each \mathbf{u} in $\left|B_{r}\right|$?

How many nodes are in $\left|B_{r}\right|$?

Final Result

For \mathbf{n} calls to makeSets() [\mathbf{n} items] and \mathbf{m} find() calls the max work is:

Even Better

In case that still seems too slow tightest bound is actually

$\Theta(m \alpha(m, n))$

Where $\alpha(m, n)$ is the inverse Ackermann function which grows much slower than $\log ^{*} \mathrm{n}$.

Proof well outside this class.

Randomized Algorithms

A randomized algorithm is one which uses a source of randomness somewhere in its implementation.

Figure from Ondov et al 2016

$$
\begin{array}{lllllllllll}
H(x) & 0 & 2 & 1 & 0 & 0 & 4 & 0 & 2 & 0 & 6 \\
H(y) & 1 & 0 & 2 & 3 & 1 & 0 & 3 & 4 & 0 & 1 \\
H(z) & 2 & 1 & 0 & 2 & 0 & 1 & 0 & 0 & 7 & 2
\end{array}
$$

