Data Structures

Disjoint Sets 3

CS 225 October 20, 2023
Brad Solomon & G Carl Evans

UNIVERSITY OF —

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives oo by ST2e

d |MQ\/j’ P’F‘F\’(:9,/)/')\

Discuss efficiency of disjoint sets f ;

s

path compression and
Prove efficiency of disjoint sets (again) L

Introduce N

Disjoint Sets

%
o o a» [/

o
(WY
S
(o o)

Key Ideas:

» Each element exists in exactly one set.

e Every item in each set has the same representation
e Each set has a different representation

Disjoint Sets Representation

We can represent a disjoint set as an array where the key is the index

IThe values inside the array stores our sets as a pseudo-tree (UpTree)

<Negative values denote representative elements (the root)

All other set members store the index to a parent of the UpTree
Qo hadht J<ze A Y s

.

Ao

e
o

Disjoint Sets - Best and Worst UpTree
A Brg

5 c"._f—%/c 7]
FOW 5@
Pod() <SI)

Nw(‘\@

Disjoint Sets - Smart Union

A

of \@
CEON
Y /

GRONOOS

Unionbyheight [0 T 1 [2 [2[4 [5 6] 71 81 9| 10] 11 | Idea: Keep the height of
the tree as small as
6 | 6 6|8 |—4 10| 7 |-3 7 7| 4|5 possible.
Union by size | © 1 2 3 4 5 6 7) 9 [10 | 11 | /dea: Minimize the
number of nodes that
— é,?e — 6 6 6 8 -4 10 7 -8 7 7 4 > | increase in height

-
Claim that both guarantee the height of the treeis: © (10g n) = ~—

Disjoint Sets Union by Size

int rooték:;——

1l | void DisjointSets: :unionBySize (int rootl,
2 int newSize = arr [rootl] + arr [root2];
3 —

4 if (arr [rootl] < arr [root2]) {

5

6 arr [root2] = rootl;

7

8 arr [rootl] = newSize;

9
10 } else {
11
12 arr [rootl] = root2;
13
14 arr [root2] = newSize;
15
16 }

}

-

Q)q\y b(‘ Ca(\wé On heo [C'Jo*g

— G

unionBySize (4, 3)

Wy
(0 & Q)

oo

o
)

00
(e

s

Disjoint Sets Union by Size

nes)
Claim: Sets unioned by size have a height of at most O(logz n)
/ T =

Claim: An UpTree of height h has nodes > 2" e

Base Case:
Base case height is 0, has one node.

o w /)

®
N
PO
; 0 _
® O 5 2o
a0l K_ Base case holds!

Disjoint Sets Union by Size {_i‘”’* Ap B e e

Sets \‘79:.05 Uniew p
IH: Claim is true for < 1 unions, prove for ith union.

¢

(We have done i — 1 total unions and plan to do one more)

Claim: An UpTree of height h has nodes > Pk

A > Rier T~ A
R A ::B& n(B) > n(A)
2 A T ¢
Case 1: h(A) < h(B) A
Case 2: h(A) == h(B) ; /
- ?
Case 3: h(A) > h(B) ~ B

e o o . o A(&)
Disjoint Sets Unlonb%/ Size b 2
Claim: An UpTree of height h has nodes > 2

IH: Claim is true for < 1 unions, prove for ith union.

Case 1: height(A) < height(B) . * B
v (
U> & ded (! E/(5o 73/ V\
AN

\> W“/ he it dorsat (}104\96',
)R TH bt A £ B ar qod Ngin o

N /1 b
R e - S ;‘"‘g)-&}mz}
') = l\’&) + /)IA)

Disjoint Sets Union by Size n(B) 2 n(A

Claim: An UpTree of height h has nodes > 2" g vl
v
IH: Claim is true for < 1 unions, prove for ith union. X gt\&k
(S
Case 2: height(A) == height(B)

\)ML/ et (MR = Lt heit /)|
B\/ tH: n (B\> - /’l@-l— “(A)

WB) _h(A)

Xt
RN L) \u
>t h(B)#
N \

N = /\(B> <

Disjoint Sets Union by Size

il
Claim: An UpTree of height h has nodes > 2 &
4 | Ay
IH: Claim is true for < 1 unions, prove for ith union. ~
Case 3: height(A) > height(B) @/

)k’KM/ hial
e 7/(\0‘) 2 > /ﬂ @

/\(Q = n(A) +/I\E> Z%M)
Ya

o' X \ h

hia)¥ AB) 2 s

™

Disjoint Sets Union by Size n(B) 2 n(A) @

Proven: An UpTree of height h has nodes > ok
IH: Claim is true for < 7 unions, prove for ith union. (L/

Each case we saw we have n > 2", \))/)“;: A(ley 4)
——— — —

An abbire uen SV iz I hae 906\ L\PT@\’WI]

*
L/

Path Compression

~(l,w-d‘

ot BN 1 D)

(th., Q

\0 /6 End(G)

G 10

2 C.‘..(\/a) 7
.."L\l’b)

¥o fz% T cetrng lo

wheq
all

W€ (eClu g U;‘P)) ‘wv oy {54/)1 <A
ndb Yo poly Ao (oa A.\/ec’rly

AN
N o

Path Compression

AS S ,05' //l) The More PO o
A ./,g Cloge, v <t
L

V4
ij@@@ /\}Q more Wwork The DAl was deg!)fuﬂ)
TAud vy € QM\y b wok anre
o (h) = 8

Disjoint Sets - Union by Rank (not height!)
/y.a)i(A,E)m‘) @&q)

rn 12 rak =1 @é\/
5 b 0 O . »
o O O O [zv] @/%
o ra-f¢ 9
H e wht b Pt coNPesca. = 2 e, T
/g

w< W:\l 61\30 S\’Cfl(a4 — I.(C
(o7

L

)

0 1 2 3 A 5 6 7 8

=3 -

Union by Rank (Not Height) = 4 vt by FT

Ompress l,
-

The change: New UpTrees have rank = O& ®

Let A, B be two sets being unioned. If:

rank(A) == rank(B): The merged UpTree has

/_\-/\/\/_

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B) QQ e
~—o _—7 _— - ' r:0
This is identical to height (with a different starting base)!

- —_

Union by Rank

Claim: An UpTree of rank r has nodes > 2.

Base Case:

Inductive Step: |H holds for all UpTreesup to k < r

EKLﬂ\‘& -
—" Try solving yourself before seeing answer (next slide)!

Union by Rank - Proof

Much like before we will show that in a tree with a root of rank r there are nodes(r) > 2"

Base Case: UpTree of rank = 0 has 1 node 2° = 1

Inductive Hypothesis: for all trees of ranks k, k < r, nodes(k) > 2*

A root of rank r is created by merging two trees of rank r — 1
by IH each of those trees have nodes(r — 1) > 27!
so, tree a of rank r has nodes(r) > 2 x 2" =1 > 2r

Taking the inverse, we get a height of O(log(n))

Union by Rank w/ Path Compression

How does rank w/ path compression affect our runtime?
S <5
Q/‘/ 7)
JORI i o
o |
@/ @3) ()
° K 1:‘»'&((') ~ ()“0‘7'«) W/ %
T

2
(‘W\o

Union by Rank w/ Path Compression

1. Rank only changes for roots and can only increase (unlike height!)

\,) (a "G ¢d) f[a”'”‘*s

TLS B uby Ga o O

rzx ¢ > ¢l

2. For all non-root nodes x, rank(x) < rank(parent(x))

L

3. If parent(x) changes, then our new parent has larger rank.

/

:M = r <P > 0 C,r > 4]

— > &

c-|

Union by Rank w/ Path Compression

4. min(nodes) in a set with a root of rank'xhas > 2* n@
U preef T S Hipped

7 ,

N Z ¥

ceslotiag Y

5. Since there are only n nodes the highest possible rank is |log n|.

h ™ @(/05 ‘))

Union by Rank w/ Path ression @
n

6. For any integer r, there are at most Y nodes of rank-#.

It*l/.'l—:ve\y.' Tt\c lCNﬁ'r ”\y (ad(l TNe There
ﬂ{ ‘&wo =¥ A(Y*‘S T (an

tized Time (Rank w/ Path Compression)

W” Ao { e ¥
For n calls to makeSets() [n items] and m find() callw§ Yvork is...
— /@ Bwl =8 &

This gives us a more accurate picture since each find can
make our search a faster!

O
Two cases of find(): 7 o leq) (e é \@@;rss
1. We search for root [or a node whose parent is root]
/\/\/
& O) g

2. We search for a node where neither above apply.
L> Voot Cameg |, ; DC RS /MC'JC\/

Amortized Time (Rank w/ Path Compression)

Put every non-root node in a bucket by rank!

0 0

Structure buckets to store ranks [, 2" — 1] 1 1

2-3 2

Wosh . 4-15 3

/V)O)(16 — 65535 4

ALK 4, m{) 65536 — 27{65536)-1 5

bed
5)\6 ﬁ Taconn L e = W
/ S L eaat O ,
\% me Gx?bﬂ) ' P /0/0
Cyuy 9 ’
patl. ch st e dvmt LL

B o~ =3

Iterated Logarithm Function (log™n)

log™n is piecewise defined as
Oifn <1

otherwise

1 + log"(logn)

Amortized Time (Rank w/ Path Compression)

Let | B, | be the size of the bucket with min rank r.

. 0 0

What is max(| B, |)? . .
2-3 2

4-15 3

16 — 65535 4

65536 — 27{65536}-1 5

Amortized Time (Rank w/ Path Compression)

The work of find(x) is the steps taken on the path from a node x to the root
(or immediate child of the root) of the UpTree containing x

We can split this into two cases:

Case 1: We take a step from one bucket to another bucket.

Case 2: We take a step from one item to another inside the same bucket.

Amortized Time (Rank w/ Path Compression)

Case 2: We take a step from one item to another inside the same bucket.

A

Let’s call this the step from u to v. @ 4

Every time we do this, we do path compression: @ Q\@)
We set parent(u) a little closer to root Q{ @

How many total times can | do this for each uin |B,|?

How many nodes arein | B, |?

Final Result @

For n calls to makeSets() [n items] and m find() calls the max work is:

Even Better

In case that still seems too slow tightest bound is actually

O(m a(m, n))

Where a(m, n) is the inverse Ackermann function which grows much slower
than log*n.

Proof well outside this class.

Randomized Algorithms

A randomized algorithm is one which uses a source of randomness
somewhere in its implementation.

‘_/v 1 119
0 2 | @+=—>| Frank =¥ [Francis
0 3 [@r—>| Anna |—> Peter
1 4 |@—>| Betty

Figure from Ondov et al 2016

