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Learning Objectives

Discuss efficiency of disjoint sets

Finish disjoint set implementation



Disjoint Sets
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Key Ideas: 
• Each element exists in exactly one set. 
• Every item in each set has the same representation 
• Each set has a different representation



Implementation #2
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Find(k): 

Union(k1, k2): 



UpTrees
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Disjoint Sets
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UpTrees: Worst Case
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Disjoint Sets Representation
We can represent a disjoint set as an array where the key is the index

The values inside the array stores our sets as a pseudo-tree (UpTree)

The value -1 is our representative element (the root)

All other set members store the index to a parent of the UpTree
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Disjoint Sets Find
int DisjointSets::find(int i) { 
  if ( s[i] < 0 ) { return i; } 
  else { return find( s[i] ); }  
}
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Running time?

What is ideal UpTree?



Disjoint Sets Union
int DisjointSets::union(int r1, int r2) { 
   

}
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Disjoint Sets – Union
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Disjoint Sets – Smart Union
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Union by height Idea: Keep the height of 
the tree as small as 
possible.



Disjoint Sets – Smart Union
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Union by size Idea: Minimize the 
number of nodes that 
increase in height



Disjoint Sets – Smart Union
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Union by height

Union by size

Idea: Keep the height of 
the tree as small as 
possible.

Idea: Minimize the 
number of nodes that 
increase in height

Claim that both guarantee the height of the tree is: _____________. 



Disjoint Sets Find
int DisjointSets::find(int i) { 
  if ( s[i] < 0 ) { return i; } 
  else { return find( s[i] ); }  
}
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Does our metadata change anything?
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Disjoint Sets Union Example
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Disjoint Sets Union
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unionBySize(4, 3)

void DisjointSets::unionBySize(int root1, int root2) { 
  int newSize = arr_[root1] + arr_[root2]; 
   
  if ( arr_[root1] < arr_[root2] ) { 
 
    arr_[root2] = root1; 

    arr_[root1] = newSize; 

  } else { 
 
    arr_[root1] = root2; 

    arr_[root2] = newSize; 

  } 
}
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Disjoint Sets Union by Size
Claim: Sets unioned by size have a height of at most O(log2 n)

Claim: An UpTree of height h has nodes  ____________≥

Base Case:



Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

IH:



Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

Case 1: height(A) < height(B)

n(B)  n(A)≥

IH: Claim is true for  unions, prove for th union.< i i



Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

Case 2: height(A) == height(B)

IH: Claim is true for  unions, prove for th union.< i i

n(B)  n(A)≥



Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

Case 3: height(A) > height(B)

IH: Claim is true for  unions, prove for th union.< i i

n(B)  n(A)≥



Disjoint Sets Union by Size
Proven: An UpTree of height h has nodes ≥ 2h

Each case we saw we have . n ≥ 2h

n(B)  n(A)≥

IH: Claim is true for  unions, prove for th union.< i i



Disjoint Sets – Union by Rank
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Union by Height (Rank)
Instead of using height, lets use rank.

The change: New UpTrees have rank = 0

Let A, B be two sets being unioned. If:

This is identical to height (with a different starting base)! 

rank(A) == rank(B): The merged UpTree has rank + 1  

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)


