Data Structures
 Disjoint Sets 2

CS 225
October 18, 2023
Brad Solomon \& G Carl Evans

Department of Computer Science

Learning Objectives
Finish disjoint set implementation
Discuss efficiency of disjoint sets

Disjoint Sets

Key Ideas:

- Each element exists in exactly one set.
- Every item in each set has the same representation
- Each set has a different representation

Implementation \#2

Find(k):

Union($\mathbf{k}_{\mathbf{1}}, \mathrm{k}_{\mathbf{2}}$):

UpTrees

Disjoint Sets

0	1	2	3	4	5	6	7	8	9

UpTrees: Worst Case

0	1	2	3

0	1	2	3

Disjoint Sets Representation

We can represent a disjoint set as an array where the key is the index

The values inside the array stores our sets as a pseudo-tree (UpTree)
The value - $\mathbf{1}$ is our representative element (the root)
All other set members store the index to a parent of the UpTree

Disjoint Sets Find

```
int DisjointSets::find(int i) {
    if ( s[i] < 0 ) { return i; }
    else { return find( s[i] ); }
}
```

Running time?

What is ideal UpTree?

0	1	2	3	4	5	6	7	8	9
$\mathbf{4}$	$\mathbf{8}$			$\mathbf{- 1}$				$\mathbf{4}$	

Disjoint Sets Union

1	int DisjointSets: :union(int r1, int r2) \{
2	
3	
4	
5	$\}$

0	1	2	3	4	5	6	7	8	9
$\mathbf{- 1}$	$\mathbf{8}$			$\mathbf{- 1}$				$\mathbf{4}$	

Disjoint Sets - Union

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8	-1	10	7	-1	7	7	4	5

Disjoint Sets - Smart Union

Union by height | Idea: Keep the height of |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Disjoint Sets - Smart Union

Union by size

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Minimize the number of nodes that increase in height

Disjoint Sets - Smart Union

Union by height \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l}
\& 0 \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11

\cline { 2 - 11 } \& | Idea: Keep the height of |
| :--- |
| the tree as small as |
| possible. |

\hline
\end{tabular}

Union by size

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Minimize the number of nodes that increase in height

Claim that both guarantee the height of the tree is: \qquad .

Disjoint Sets Find

```
int DisjointSets::find(int i) {
    if ( s[i] < 0 ) { return i; }
    else { return find( s[i] ); }
}
```

Does our metadata change anything?

0148

0	1	2	3	4	5	6	7	8	9
$\mathbf{4}$	$\mathbf{8}$			$-\mathbf{3} /-\mathbf{4}$				$\mathbf{4}$	

Disjoint Sets Union Example
$\begin{array}{cccccc}\uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ 0 & (1) & 2 & (3) & 4 & (5)\end{array}$

0	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5
$\mathbf{- 1}$					

0	1	2	3	4	5

0	1	2	3	4	5

Disjoint Sets Union

```
void DisjointSets::unionBySize(int root1, int root2) {
    int newSize = arr_[root1] + arr_[root2];
    if ( arr_[root1] < arr_[root2] ) {
            arr_[root2] = root1;
            arr_[root1] = newSize;
    } else {
            arr_[root1] = root2;
            arr_[root2] = newSize;
        }
}
```

0	1	2	3	4	5	6	7	8	9
$\mathbf{4}$	$\mathbf{8}$		$\mathbf{- 2}$	-4		$\mathbf{3}$		$\mathbf{4}$	

Disjoint Sets Union by Size

Claim: Sets unioned by size have a height of at most O ($\log _{2} n$)
Claim: An UpTree of height \mathbf{h} has nodes \geq

Base Case:

Disjoint Sets Union by Size

Claim: An UpTree of height \mathbf{h} has nodes $\geq 2^{h}$
IH:

Disjoint Sets Union by Size

Claim: An UpTree of height \mathbf{h} has nodes $\geq 2^{h}$
IH: Claim is true for $<i$ unions, prove for i th union.
Case 1: height(A) < height(B)

Disjoint Sets Union by Size

Claim: An UpTree of height \mathbf{h} has nodes $\geq 2^{h}$
IH: Claim is true for $<i$ unions, prove for i th union.
Case 2: height(A) == height(B)

Disjoint Sets Union by Size

Claim: An UpTree of height \mathbf{h} has nodes $\geq 2^{h}$
IH: Claim is true for $<i$ unions, prove for i th union.
Case 3: height(A) > height(B)

Disjoint Sets Union by Size

Proven: An UpTree of height \mathbf{h} has nodes $\geq 2^{h}$
IH: Claim is true for $<i$ unions, prove for i th union.
Each case we saw we have $n \geq 2^{h}$.

Disjoint Sets - Union by Rank

0	1	2	3	4	5	6	7	8	9

Union by Height (Rank)

Instead of using height, lets use rank.
The change: New UpTrees have rank $=0$
Let A, B be two sets being unioned. If:
$\operatorname{rank}(\mathrm{A})==\boldsymbol{\operatorname { r a n k }}(\mathrm{B}):$ The merged UpTree has rank +1
$\operatorname{rank}(\mathbf{A})>\operatorname{rank}(\mathbf{B}):$ The merged UpTree has $\operatorname{rank}(\mathrm{A})$
$\operatorname{rank}(B)>\operatorname{rank}(A):$ The merged UpTree has rank(B)
This is identical to height (with a different starting base)!

