
Department of Computer Science

Data Structures
Disjoint Sets 2

October 18, 2023 CS 225
Brad Solomon & G Carl Evans

Learning Objectives

Discuss efficiency of disjoint sets

Finish disjoint set implementation

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

Key Ideas:
• Each element exists in exactly one set.
• Every item in each set has the same representation
• Each set has a different representation

Implementation #2

0 1 4 2 7 3 5 6
1 2 3 4 5 6 70

Find(k):

Union(k1, k2):

UpTrees

1 2 30

0 1 2 3

1 2 30

1 2 30 1 2 30

Disjoint Sets

2 5 9 7 0 1 4 8 3 6

1 2 3 4 5 6 70 8 9

0

1

2

345

6

7

8
9

UpTrees: Worst Case

1 2 30

0 1 2 3

1 2 30

1 2 30 1 2 30

Disjoint Sets Representation
We can represent a disjoint set as an array where the key is the index

The values inside the array stores our sets as a pseudo-tree (UpTree)

The value -1 is our representative element (the root)

All other set members store the index to a parent of the UpTree

3

2

51

Disjoint Sets Find
int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find(s[i]); }
}

1
2
3
4

0 1 4 8

0

1

4

8

1 2 3 4 5 6 70

8 -14

8 9

4

Find(1)

Running time?

What is ideal UpTree?

Disjoint Sets Union
int DisjointSets::union(int r1, int r2) {

}

1
2
3
4
5 0

1

4

8

1 2 3 4 5 6 70

8 -1-1

8 9

4

Union(0, 4)

Disjoint Sets – Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 -1 10 7 -16

8 9

7 7

10 11

4 5

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by height Idea: Keep the height of
the tree as small as
possible.

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by size Idea: Minimize the
number of nodes that
increase in height

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by height

Union by size

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

Claim that both guarantee the height of the tree is: _____________.

Disjoint Sets Find
int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find(s[i]); }
}

1
2
3
4

0 1 4 8

0

1

4

8

1 2 3 4 5 6 70

84

8 9

4

Find(1)

Does our metadata change anything?

-3/-4

Disjoint Sets Union Example

32 51 40
1 2 3 4 50

-1 -1 -1 -1 -1-1

1 2 3 4 50

1 2 3 4 50

Disjoint Sets Union

0

1

4

8

1 2 3 4 5 6 70

8 -2 -4 34

8 9

4

unionBySize(4, 3)

void DisjointSets::unionBySize(int root1, int root2) {
 int newSize = arr_[root1] + arr_[root2];

 if (arr_[root1] < arr_[root2]) {

 arr_[root2] = root1;

 arr_[root1] = newSize;

 } else {

 arr_[root1] = root2;

 arr_[root2] = newSize;

 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

3

6

Disjoint Sets Union by Size
Claim: Sets unioned by size have a height of at most O(log2 n)

Claim: An UpTree of height h has nodes ____________≥

Base Case:

Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

IH:

Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

Case 1: height(A) < height(B)

n(B) n(A)≥

IH: Claim is true for unions, prove for th union.< i i

Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

Case 2: height(A) == height(B)

IH: Claim is true for unions, prove for th union.< i i

n(B) n(A)≥

Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

Case 3: height(A) > height(B)

IH: Claim is true for unions, prove for th union.< i i

n(B) n(A)≥

Disjoint Sets Union by Size
Proven: An UpTree of height h has nodes ≥ 2h

Each case we saw we have . n ≥ 2h

n(B) n(A)≥

IH: Claim is true for unions, prove for th union.< i i

Disjoint Sets – Union by Rank

5

7

9
4

0 83

6

1 2 3 4 5 6 70 8 9

21

Union by Height (Rank)
Instead of using height, lets use rank.

The change: New UpTrees have rank = 0

Let A, B be two sets being unioned. If:

This is identical to height (with a different starting base)!

rank(A) == rank(B): The merged UpTree has rank + 1

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)

