
Department of Computer Science

Data Structures
Extra Credit Project and Disjoint Sets

October 16, 2023 CS 225
Brad Solomon & G Carl Evans

Learning Objectives

Finish analyzing efficiency of minHeap

Discuss extra credit project

Introduce disjoint sets

Big Picture: Extra credit project
Do something that is of personal interest to you!

Want to do undergrad research? Find a foundational algorithm!

Want to go off into industry? Demonstrate knowledge with code!

Want extra credit points? Use one of the suggested algorithms!

ECP Proposal
You are ‘writing’ your own assignment skeleton

1. Function I/O (in written proposal)

2. Tests (in Github repo)

3. Datasets (in Github repo)

Approved By November 1

ECP Proposal
You dont need to know how to implement to propose a structure!

Approved By November 1

ECP Mid-Project Check-in
Meet with your mentor to confirm your algorithm works!

Meet by November 20

ECP Final Deliverables
Prove your algorithm is correct and estimate runtime

1. Submit code base (GitHub repo)

2. Write a report that describes proof of correctness and efficiency

3. Present your work! Highlight what you did!

Due December 6

Proving buildHeap Running Time

Proof Strategy:

1. Call heapifyDown() on every non-leaf node

2. Every node we heapifyDown() has its height as worst case work.

Summing the total heights of every node is our worst case time!

Theorem: The running time of buildHeap on array of size n is O(n)

Proving buildHeap Running Time
Theorem: The running time of buildHeap on array of size n is O(n)

How can we relate h and n?

S(h) = sh+1 − 2 − h

How can we estimate running time?

minHeap
5

15 9

25

4

6

7 20

1116 1214

4 5 6 15 9 7 20 16 25 14 12 11

1. Construction

2. Insert

3. RemoveMin

minHeap is a good example of tradeoffs:

Heap Sort
5

15 9

25

4

6

7 20

1116 1214

4 5 6 15 9 7 20 16 25 14 12 11

1.

2.

3.

Running time?

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

Key Ideas:
• Each element exists in exactly one set.
• Every item in each set has the same representation
• In other words: find(4) == find(8) == find(0) …

• Each set has a different representation
• In other words: find(7) != find(4)

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

Each set is represented by a canonical element (internally defined)

Operation:

find(4) == find(8)

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

The union operation combines two sets into one set.

Operation:
if find(2) != find(7){
union(find(2), find(7));

}

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

We add new items to our ‘universe’ by making new sets.

Operation:

makeSet(10);

Disjoint Sets ADT
Constructor

Find

Union

makeSet

Disjoint Sets
How might we implement a disjoint set?

Implementation #1
1 2 3 4 5 6 70

Find(k):

Union(k1, k2):

0 1 4 2 7 3 5 6

Implementation #2

0 1 4 2 7 3 5 6
1 2 3 4 5 6 70

Find(k):

Union(k1, k2):

UpTrees

1 2 30

0 1 2 3

1 2 30

1 2 30 1 2 30

UpTrees

1 2 30

0 1 2 3

1 2 30

1 2 30 1 2 30

Disjoint Sets Representation
We can represent a disjoint set as an array where the key is the index

The values inside the array stores our sets as a pseudo-tree (UpTree)

The value -1 is our representative element (the root)

All other set members store the index to a parent of the UpTree

3

2

51

Disjoint Sets

2 5 9 7 0 1 4 8 3 6

1 2 3 4 5 6 70 8 9

0

1

2

345

6

7

8
9

Disjoint Sets Find
int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find(s[i]); }
}

1
2
3
4

0 1 4 8

0

1

4

8

1 2 3 4 5 6 70

8 -14

8 9

4

Find(1)

Running time?

What is ideal UpTree?

Disjoint Sets Union
int DisjointSets::union(int r1, int r2) {

}

1
2
3
4
5 0

1

4

8

1 2 3 4 5 6 70

8 -1-1

8 9

4

Union(0, 4)

Disjoint Sets – Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 -1 10 7 -16

8 9

7 7

10 11

4 5

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by height Idea: Keep the height of
the tree as small as
possible.

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by size Idea: Minimize the
number of nodes that
increase in height

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by height

Union by size

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

Both guarantee the height of the tree is: _____________.

