
Department of Computer Science

Data Structures
Heaps

October 10, 2023 CS 225 
Brad Solomon & G Carl Evans



Learning Objectives
Review heap ADT

Analyze efficiency of minHeap implementations



(min)Heap
A complete binary tree T is a 
min-heap if: 
• T = {}  or 

• T = {r, TL, TR}, where r is less 
than the roots of {TL, TR} 
and {TL, TR} are min-heaps.

5

15 9

25

4

6

7 20

1116 1214



(min)Heap

4 5 6 15 9 7 20 16 25 14 12 11

1 2 3 4 5 6 7 8 9 10 11 120 13 1514

5

15 9

25

4

6

7 20

1116 1214



buildHeap (minHeap Constructor)

U

L D

P

B

I

H E

WA ON

B U I L D H E A P N O W

If you give me an array of data, how to build?



buildHeap – sorted array

B

E H

O

A

D

I L

WN UP

B U I L D H E A P N O W

A B D E H I L N O P U W



buildHeap - heapifyUp
B

D A

C

E

B

D C

A

E

A B E D C

C B E D A



buildHeap - heapifyDown
B

D A

C

E

F G

C B E D A F G

B

D C

A

E

F G

A B E D C F G



buildHeap

template <class T> 
void Heap<T>::buildHeap() { 
  for (unsigned i = parent(size); i > 0; i--) { 
    heapifyDown(i); 
  } 
}

1 
2 
3 
4 
5 
6

1. Sort the array — its a heap!

2. heapifyUp()

3. heapifyDown()

1 
2 
3 
4 
5 
6

template <class T> 
void Heap<T>::buildHeap() { 
  for (unsigned i = 2; i <= size_; i++) { 
    heapifyUp(i); 
  } 
}



U

L D

P

B

I

H E

WA ON

O(h’) = 1

buildHeap - heapifyDown
Lets break down the total ‘amount’ of work:

B U I L D H E A P N O W



B U I D H E P N O WA L

U

A D

P

B

I

H E

WL ON

O(h’) = 2

buildHeap - heapifyDown
Lets break down the total ‘amount’ of work:



A

L D

P

B

E

H I

WU ON

buildHeap - heapifyDown
Lets break down the total ‘amount’ of work:

O(h’) = 3

B D H P N O WA E L I U



Proving buildHeap Running Time
Theorem: The running time of buildHeap on array of size n is:

Strategy:



Proving buildHeap Running Time
S(h): Sum of the heights of all nodes in a perfect tree of height h.

S(0) =

S(1) =

S(2) =

S(h) =



Proving buildHeap Running Time

Base Case:

Claim: Sum of heights of all nodes in a perfect tree: S(h) = sh+1 − 2 − h



Proving buildHeap Running Time

Induction Step:

Claim: Sum of heights of all nodes in a perfect tree: S(h) = sh+1 − 2 − h



Proving buildHeap Running Time
Theorem: The running time of buildHeap on array of size n is O(n)

How can we relate h and n?

S(h) = sh+1 − 2 − h

How can we estimate running time?



Heap Sort
5

15 9

25

4

6

7 20

1116 1214

4 5 6 15 9 7 20 16 25 14 12 11

1. 
 
2. 

3.

Running time?

minHeap is a good example of tradeoffs: 



Disjoint Sets

2  5  9 7

0  1  4  8 3  6

Key Ideas: 

• Each element exists in exactly one set. 
• Every item in each set has the same representation 
• In other words:  find(4) == find(8) == find(0) … 

• Each set has a different representation 
• In other words: find(7) != find(4)



Disjoint Sets ADT
Constructor

Find

Union

InsertSet


