Data Structures

Heaps

CS 225 October 10, 2023
Brad Solomon & G Carl Evans

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science




Learning Objectives
Review heap ADT

Analyze efficiency of minHeap implementations




(min)Heap °

A complete binary tree T is a
min-heap if:

© O
.T={} or OGN )

e T={r, T, Tg}, whereris less

than the roots of {T, Tg} @ @ @ @ @

and {T,, T} are min-heaps.




(min)Heap

15




buildHeap (minHeap Constructor)

If you give me an array of data, how to build?




buildHeap - sorted array

U

L

D

H




buildHeap - heapifyUp

C B E D A




buildHeap - heapifyDown G

C B E D A F G




buildHeap

1. Sort the array — its a heap!

2. heapifyUp()

l| template <class T>
2 | void Heap<T>: :buildHeap () {
3 for (unsigned i = 2; i <= size ; i++) {
4 heapifyUp (i) ;
5 }
6|}
3. heapifyDown()

template <class T>
void Heap<T>: :buildHeap () ({
for (unsigned i = parent(size); i > 0; i--) {
heapifyDown (i) ;
}
}

OO ddWN =




buildHeap - heapifyDown

Lets break down the total ‘amount’ of work:




buildHeap - heapifyDown

Lets break down the total ‘amount’ of work:




buildHeap - heapifyDown

Lets break down the total ‘amount’ of work:

_dndn




Proving buildHeap Running Time

Theorem: The running time of buildHeap on array of size n is:

Strategy:




Proving buildHeap Running Time

S(h): Sum of the heights of all nodes in a perfect tree of height h.

S(0) =
S(1)=
S(2) =

S(h) =




Proving buildHeap Running Time

Claim: Sum of heights of all nodes in a perfect tree: S(h) = s"t1 =2 — h

Base Case:




Proving buildHeap Running Time

Claim: Sum of heights of all nodes in a perfect tree: S(h) = s"t1 =2 — h

Induction Step:




Proving buildHeap Running Time @

Theorem: The running time of buildHeap on array of size n is O(n)
Sthy=s"t' -2 —n
How can we relate h and n?

How can we estimate running time?




Heap Sort (4 1

® O @ ;

Running time?

minHeap is a good example of tradeoffs:



Disjoint Sets

Key Ideas:
« Each element exists in exactly one set.

e Every item in each set has the same representation
e In other words: find(4) == find(8) == find(0) ...

e Each set has a different representation
e In other words: find(7) != find(4)




Disjoint Sets ADT

Constructor
InsertSet
Find

Union




