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Learning Objectives
Review heap ADT

Analyze efficiency of minHeap implementations



(min)Heap
A complete binary tree T is a 
min-heap if: 
• T = {}  or 

• T = {r, TL, TR}, where r is less 
than the roots of {TL, TR} 
and {TL, TR} are min-heaps.
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(min)Heap
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buildHeap (minHeap Constructor)
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If you give me an array of data, how to build?



buildHeap – sorted array
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buildHeap - heapifyUp
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buildHeap - heapifyDown
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buildHeap

template <class T> 
void Heap<T>::buildHeap() { 
  for (unsigned i = parent(size); i > 0; i--) { 
    heapifyDown(i); 
  } 
}
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1. Sort the array — its a heap!

2. heapifyUp()

3. heapifyDown()
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template <class T> 
void Heap<T>::buildHeap() { 
  for (unsigned i = 2; i <= size_; i++) { 
    heapifyUp(i); 
  } 
}
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O(h’) = 1

buildHeap - heapifyDown
Lets break down the total ‘amount’ of work:
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O(h’) = 2

buildHeap - heapifyDown
Lets break down the total ‘amount’ of work:
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buildHeap - heapifyDown
Lets break down the total ‘amount’ of work:

O(h’) = 3
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Proving buildHeap Running Time
Theorem: The running time of buildHeap on array of size n is:

Strategy:



Proving buildHeap Running Time
S(h): Sum of the heights of all nodes in a perfect tree of height h.

S(0) =

S(1) =

S(2) =

S(h) =



Proving buildHeap Running Time

Base Case:

Claim: Sum of heights of all nodes in a perfect tree: S(h) = sh+1 − 2 − h



Proving buildHeap Running Time

Induction Step:

Claim: Sum of heights of all nodes in a perfect tree: S(h) = sh+1 − 2 − h



Proving buildHeap Running Time
Theorem: The running time of buildHeap on array of size n is O(n)

How can we relate h and n?

S(h) = sh+1 − 2 − h

How can we estimate running time?



Heap Sort
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Running time?

minHeap is a good example of tradeoffs: 



Disjoint Sets
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Key Ideas: 

• Each element exists in exactly one set. 
• Every item in each set has the same representation 
• In other words:  find(4) == find(8) == find(0) … 

• Each set has a different representation 
• In other words: find(7) != find(4)



Disjoint Sets ADT
Constructor

Find

Union

InsertSet


