Data Structures
 BTree Analysis (and Heaps)

October 9, 2023
Brad Solomon \& G Carl Evans

Department of Computer Science

Exam 3 (10/16-10/18)

Sign up now on Prairietest!
Cumulative content through end of BTrees (today)

Coding question based on trees (know your tree labs!)

mosaics

Learning Objectives Analyze the performance of the BTree

Introduce a specialized data structure (discuss tradeoffs)

STree Properties M'rimizo seek operations

A BTrees of order m is an m-ar tree and by definition:

- All keys within a node are ordered
- All nodes contain no more than $\mathbf{m - 1}$ keys.

- All internal nodes have exactly one more child than keys

Root nodes can be a leaf or have $[\mathbf{2}, \mathbf{m}]$ children.

All non-root, internal nodes have [ceil(m/2), m] children.

All leaves in the tree are at the same level.

BTree Analysis of ode 3

Let n be the number of keys in a STree of order \mathbf{m}. Fans ch. 'driven ad rs
What is our best approximation for the runtime for find? For insert?
mist constant size of notes \# of nodes is not 世 keys

BTree Analysis
or Ave
Like the BST, BTree height determines the runtime of our operations!
Claim: The BTree structure limits our height to $O\left(\log _{m}(n)\right)$

Proof: We want to find a relationship for BTrees between the number of keys (\mathbf{n}) and the height (\mathbf{h}).
estimate min 1 sing h estinacing heist ${ }^{2}$
n given nodes is hard

BTree Analysis

Strategy:

We will first count the number of nodes, level by level.
Then, we will add the minimum number of keys per node (n).

The minimum number of nodes will tell us the largest possible height (\mathbf{h}), allowing us to find an upper-bound on height. 2 ch:Idra $\equiv=1$ kpy
\square

Key Facts:

Root nodes can be a leaf or have $[\mathbf{2}, \mathbf{m}]$ children.
All non-root, internal nodes have [ceil(m/2), m] children.

BTree Analysis

$$
(m a x)
$$

Minimum number of nodes for a STree of order m at each level: $m_{\sim} /$

Level 2: $2 t$
Level 3: αt^{2}

Level h: $2 t^{h-1}$
total $\#$ of notes: $1+\sum_{i=0}^{i=t^{n-1}} 2 t^{i}$

$$
2+2 t+2 t^{2}+\ldots
$$

BTree Analysis

$$
\mathcal{L}=t=\left\lceil\frac{m}{2}\right\rceil
$$

The total number of nodes is the sum of all the levels: \qquad

$$
1+2 \sum_{k=0}^{\downarrow_{h-1}} t^{k}=1+2\left(\frac{t^{h}-1}{t-1}\right)
$$

$$
\sum_{i=0}^{n-1} x^{i}=\frac{x^{n}-1}{x-1}
$$

\rightarrow How con me relay nodes to keys?
Bree of ortor 2 is a BST

As lows as $m=3, B T$ tor is efficient!
Note this does. at wert for $n=2$

BTree Analysis
The total number of nodes:

The total number of keys:
coot has how many hey y?
internal nodes: $5 \mathrm{~m} / \mathrm{a}-I \equiv t-I$
leaf nodes: $5 m l^{7}-1 \equiv t-1$

$$
1+2\left(\frac{t^{h}-1}{t-1}\right) \cdot t-1
$$

$$
\begin{aligned}
& =1+2 t^{n}-2 \\
& =2 t^{n}-1 \quad \mathrm{~min} \neq \text { keys } \\
& \text { in throe } \\
& \text { of wish }
\end{aligned}
$$

STree Analysis
The smallest total number of keys is:

$$
2 t^{h}-1
$$

So an inequality about \mathbf{n}, the total number of keys:

$$
t=\frac{m}{2}
$$

$$
\left.\log \binom{n_{+1}}{\underset{2}{2}} \geq \begin{array}{l}
R_{10} f^{h}-1 \\
2
\end{array}\right) \quad \log _{t}\left(\frac{n+1}{2}\right) \geq h
$$

Solving for \mathbf{h}, since \mathbf{h} is the max number of seek operations:

BTree Analysis
Given $\mathbf{m}=101$, a tree of height $h=4$ has:

$$
\operatorname{man}_{\downarrow}^{\min } \text { us otil} \text { max }{ }^{h=y}
$$

Minimum Keys: $2 \epsilon^{h}-1=2\left[\frac{m]^{2}}{2}-1\right.$

$$
\begin{aligned}
& 2 \frac{m}{2}-1 \\
& 2 \cdot 5 \mathbf{1}^{4}-1=\frac{13}{5} \text { million }
\end{aligned}
$$

Maximum Keys: Same logic but $t=M$

+ coot is not 1 key but mu l keys
$7+\left(m^{4} m^{2}+m^{3}+\ldots . .\right)^{n o d e s}$
keys
$m^{h+1}-1$ Keys
10.5 bills. $\mathrm{c}_{\text {- }}$

BTree
The BTree is still used heavily today!

Improvements such as B+Tree and B*Tree exist far outside class scope

$$
\rightarrow \text { Not bo a that project! }
$$

Answer to in-class question:
Pushing up values in a BTree is recursive.
See insert lecture for more details

Thinking conceptually: Sorting a queue
How might we build a'queue' in which our front element is the min?
After r!st we saw stach f quere \rightarrow specich case 1:s5!
\rightarrow Tralicoor far speed Lose fernder culcess
Build u) unserted list!
WInsed by appud to and of list $\mathrm{O}\left(\mathrm{y}^{*}\right.$ orom)
\rightarrow Renoe i hou to find my next min and swop wl frent
Btree/AVL tree (sornd tree-DKY)
\rightarrow Iused in los n \& henor in logn Fird in $1 \operatorname{los} n^{\prime}$

Priority Queue Implementation

$O(n)^{*}$	$O(n)$
$O(1)$	$O(n)$
$O(n)$	$O(1)$
O OOt	

Priority Queue Implementation
$O(\operatorname{losn}) \quad O(\log n)$

1) Tree size in storage
2) \pm hate pointers

I soy this object is a quire b You (the user) can orly insect I remove tent can benestatia 1 can be a tree

Thinking conceptually: A tree without pointers

What class of (non-trivial) trees can we describe without pointers?

Another possibly structure...

(min)Heap

A complete binary tree T is a min-heap if:

- $\mathbf{T}=\{ \}$ or
- $T=\left\{r, T_{L}, T_{R}\right\}$, where r is less than the roots of $\left\{\mathbf{T}_{\mathbf{L}}, \mathbf{T}_{\mathbf{R}}\right\}$ and $\left\{\mathbf{T}_{\mathbf{L}}, \mathbf{T}_{\mathbf{R}}\right\}$ are min-heaps.

