Data Structures
 BTree Analysis

Learning Objectives

Review BTree Properties

Analyze the performance of the BTree

BTree Properties

A BTrees of order \mathbf{m} is an m-way tree:

- All keys within a node are ordered
- All leaves contain no more than $\mathbf{m - 1}$ keys.
- All internal nodes have exactly one more child than keys
- Root nodes can be a leaf or have [2, m] children.
- All non-root, internal nodes have [ceil(m/2), m] children.
- All leaves are on the same level

BTree Analysis

We saw for AVL that finding an upper bound on the height (given \mathbf{n}) is the same as finding a lower bound on the nodes (given h).

We want to find a relationship for BTrees between the number of keys (\mathbf{n}) and the height (\mathbf{h}).

BTree Analysis

The height of the BTree determines maximum number of possible in search data.
...and the height of the structure is: \qquad .

Therefore: The number of seeks is no more than \qquad .
...suppose we want to prove this!

BTree Analysis

Strategy:

We will first count the number of nodes, level by level.

Then, we will add the minimum number of keys per node (n).

The minimum number of nodes will tell us the largest possible height (h), allowing us to find an upper-bound on height.

BTree Analysis

The minimum number of nodes for a BTree of order m at each level:
root:
level 1:
level 2:
level 3:
level h :

BTree Analysis

$$
t=\left\lceil\frac{m}{2}\right\rceil
$$

The total number of nodes is the sum of all the levels:

$$
1+2 \sum_{k=0}^{h-1} t^{k}
$$

$$
\text { Summation Identity: } \sum_{i=0}^{n-1} x^{i}=\frac{x^{n}-1}{x-1}
$$

BTree Analysis
The total number of nodes:

$$
1+2 \frac{t^{h}-1}{t-1}
$$

$$
t=\left\lceil\frac{m}{2}\right\rceil
$$

The total number of keys:

BTree Analysis

$$
t=\left\lceil\frac{m}{2}\right\rceil \text { 〇 }
$$

The smallest total number of keys is: $\quad 2 t^{h}-1$
So an inequality about \mathbf{n}, the total number of keys:

Solving for \mathbf{h}, since \mathbf{h} is the max number of seek operations:

BTree Analysis

Given $\mathbf{m}=101$, a tree of height $\mathbf{h}=4$ has:

Minimum Keys:

Maximum Keys:

BTree
The BTree is still used heavily today!

Improvements such as B+Tree and B*Tree exist far outside class scope

A story about BIG data

Thinking conceptually: Sorting a queue

How might we build a'queue' in which our front element is the min?

Thinking conceptually: A tree without pointers

What class of (non-trivial) trees can we describe without pointers?

